HotFreeBooks.com
Logic - Deductive and Inductive
by Carveth Read
1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse

LOGIC

DEDUCTIVE AND INDUCTIVE



First Edition, June 1898. (Grant Richards.) Second Edition, November 1901. (Grant Richards.) Third Edition, January 1906. (A. Moring Ltd.) Reprinted, January 1908. (A. Moring Ltd.) Reprinted, May 1909. (A. Moring Ltd.) Reprinted, July 1910. (A. Moring Ltd.) Reprinted, September 1911. (A. Moring Ltd.) Reprinted, November 1912. (A. Moring Ltd.) Reprinted, April 1913. (A. Moring Ltd.) Reprinted, May 1920. (Simpkin.)



LOGIC

DEDUCTIVE AND INDUCTIVE

BY

CARVETH READ, M.A.

AUTHOR OF

"THE METAPHYSICS OF NATURE"

"NATURAL AND SOCIAL MORALS"

ETC.

FOURTH EDITION

ENLARGED, AND PARTLY REWRITTEN

SIMPKIN, MARSHALL, HAMILTON, KENT & CO. LTD., 4 STATIONERS' HALL COURT. LONDON, E.C.4



[Transcriber's Note: The mathematical operator "therefore" is represented below by .'.]

PREFACE

In this edition of my Logic, the text has been revised throughout, several passages have been rewritten, and some sections added. The chief alterations and additions occur in cc. i., v., ix., xiii., xvi., xvii., xx.

The work may be considered, on the whole, as attached to the school of Mill; to whose System of Logic, and to Bain's Logic, it is deeply indebted. Amongst the works of living writers, the Empirical Logic of Dr. Venn and the Formal Logic of Dr. Keynes have given me most assistance. To some others acknowledgments have been made as occasion arose.

For the further study of contemporary opinion, accessible in English, one may turn to such works as Mr. Bradley's Principles of Logic, Dr. Bosanquet's Logic; or the Morphology of Knowledge, Prof. Hobhouse's Theory of Knowledge, Jevon's Principles of Science, and Sigwart's Logic. Ueberweg's Logic, and History of Logical Doctrine is invaluable for the history of our subject. The attitude toward Logic of the Pragmatists or Humanists may best be studied in Dr. Schiller's Formal Logic, and in Mr. Alfred Sidgwick's Process of Argument and recent Elementary Logic. The second part of this last work, on the "Risks of Reasoning," gives an admirably succinct account of their position. I agree with the Humanists that, in all argument, the important thing to attend to is the meaning, and that the most serious difficulties of reasoning occur in dealing with the matter reasoned about; but I find that a pure science of relation has a necessary place in the system of knowledge, and that the formulae known as laws of contradiction, syllogism and causation are useful guides in the framing and testing of arguments and experiments concerning matters of fact. Incisive criticism of traditionary doctrines, with some remarkable reconstructions, may be read in Dr. Mercier's New Logic.

In preparing successive editions of this book, I have profited by the comments of my friends: Mr. Thomas Whittaker, Prof. Claude Thompson, Dr. Armitage Smith, Mr. Alfred Sidgwick, Dr. Schiller, Prof. Spearman, and Prof. Sully, have made important suggestions; and I might have profited more by them, if the frame of my book, or my principles, had been more elastic.

As to the present edition, useful criticisms have been received from Mr. S.C. Dutt, of Cotton College, Assam, and from Prof. M.A. Roy, of Midnapore; and, especially, I must heartily thank my colleague, Dr. Wolf, for communications that have left their impress upon nearly every chapter.

CARVETH READ.

LONDON, August, 1914



CONTENTS

PAGE

PREFACE v

CHAPTER I

INTRODUCTORY

Sec.1. Definition of Logic 1 Sec.2. General character of proof 2 Sec.3. Division of the subject 5 Sec.4. Uses of Logic 6 Sec.5. Relation of Logic to other sciences 8 to Mathematics (p. 8); to concrete Sciences (p. 10); to Metaphysics (p. 10); to regulative sciences (p. 11) Sec.6. Schools of Logicians 11 Relation to Psychology (p. 13)

CHAPTER II

GENERAL ANALYSIS OF PROPOSITIONS

Sec.1. Propositions and Sentences 16 Sec.2. Subject, Predicate and Copula 17 Sec.3. Compound Propositions 17 Sec.4. Import of Propositions 19 Sec.5. Form and Matter 22 Sec.6. Formal and Material Logic 23 Sec.7. Symbols used in Logic 24

CHAPTER III

OF TERMS AND THEIR DENOTATION

Sec.1. Some Account of Language necessary 27 Sec.2. Logic, Grammar and Rhetoric 28 Sec.3. Words are Categorematic or Syncategorematic 29 Sec.4. Terms Concrete or Abstract 30 Sec.5. Concrete Terms, Singular, General or Collective 33

CHAPTER IV

THE CONNOTATION OF TERMS

Sec.1. Connotation of General Names 37 Sec.2. Question of Proper Names 38 other Singular Names (p. 40) Sec.3. Question of Abstract Terms 40 Sec.4. Univocal and Equivocal Terms 41 Connotation determined by the suppositio (p. 43) Sec.5. Absolute and Relative Terms 43 Sec.6. Relation of Denotation to Connotation 46 Sec.7. Contradictory Terms 47 Sec.8. Positive and Negative Terms 50 Infinites; Privitives; Contraries (pp. 50-51)

CHAPTER V

CLASSIFICATION OF PROPOSITIONS

Sec.1. As to Quantity 53 Quantity of the Predicate (p. 56) Sec.2. As to Quality 57 Infinite Propositions (p. 57) Sec.3. A. I. E. O. 58 Sec.4. As to Relation 59 Change of Relation (p. 60); Interpretation of 'either, or' (p. 63); Function of the hypothetical form (p. 64) Sec.5. As to Modality 66 Sec.6. Verbal and Real Propositions 67

CHAPTER VI

CONDITIONS OF IMMEDIATE INFERENCE

Sec.1. Meaning of Inference 69 Sec.2. Immediate and Mediate Inference 70 Sec.3. The Laws of Thought 72 Sec.4. Identity 73 Sec.5. Contradiction and Excluded Middle 74 Sec.6. The Scope of Formal Inference 76

CHAPTER VII

IMMEDIATE INFERENCES

Sec.1. Plan of the Chapter 79 Sec.2. Subalternation 79 Sec.3. Connotative Subalternation 80 Sec.4. Conversion 82 Reciprocality (p. 84) Sec.5. Obversion 85 Sec.6. Contrary Opposition 87 Sec.7. Contradictory Opposition 87 Sec.8. Sub-contrary Opposition 88 Sec.9. The Square of Opposition 89 Sec.10. Secondary modes of Immediate Inference 90 Sec.11. Immediate Inferences from Conditionals 93

CHAPTER VIII

ORDER OF TERMS, EULER'S DIAGRAMS, LOGICAL EQUATIONS, EXISTENTIAL IMPORT OF PROPOSITIONS

Sec.1. Order of Terms in a proposition 95 Sec.2. Euler's Diagrams 97 Sec.3. Propositions considered as Equations 101 Sec.4. Existential Import of Propositions 104

CHAPTER IX

FORMAL CONDITIONS OF MEDIATE INFERENCE

Sec.1. Nature of Mediate Inference and Syllogism 107 Sec.2. General Canons of the Syllogism 108 Definitions of Categorical Syllogism; Middle Term; Minor Term; Major Term; Minor and Major Premise (p. 109) Illicit Process (p. 110); Distribution of the Middle (p. 110); Negative Premises (p. 112); Particular Premises (p. 113) Sec.3. Dictum de omni et nullo 115 Sec.4. Syllogism in relation to the Laws of Thought 116 Sec.5. Other Kinds of Mediate Inference 118

CHAPTER X

CATEGORICAL SYLLOGISMS

Sec.1. Illustrations of the Syllogism 121 Sec.2. Of Figures 122 Sec.3. Of Moods 123 Sec.4. How valid Moods are determined 124 Sec.5. Special Canons of the Four Figures 126 Sec.6. Ostensive Reduction and the Mnemonic Verses 127 Sec.7. Another version of the Mnemonic Verses 132 Sec.8. Indirect Reduction 132 Sec.9. Uses of the several Figures 134 Sec.10. Scientific Value of Reduction 135 Sec.11. Euler's Diagrams for the Syllogism 136

CHAPTER XI

ABBREVIATED AND COMPOUND ARGUMENTS

Sec.1. Popular Arguments Informal 138 Sec.2. The Enthymeme 139 Sec.3. Monosyllogism, Polysyllogism, Prosyllogism, Episyllogism 141 Sec.4. The Epicheirema 142 Sec.5. The Sorites 142 Sec.6. The Antinomy 145

CHAPTER XII

CONDITIONAL SYLLOGISMS

Sec.1. The Hypothetical Syllogism 147 Sec.2. The Disjunctive Syllogism 152 Sec.3. The Dilemma 154

CHAPTER XIII

TRANSITION TO INDUCTION

Sec.1. Formal Consistency and Material Truth 159 Sec.2. Real General Propositions assert more than has been directly observed 160 Sec.3. Hence, formally, a Syllogism's Premises seem to beg the Conclusion 162 Sec.4. Materially, a Syllogism turns upon the resemblance of the Minor to the Middle Term; and thus extends the Major Premise to new cases 163 Sec.5. Restatement of the Dictum for material reasoning 165 Sec.6. Uses of the Syllogism 167 Sec.7. Analysis of the Uniformity of Nature, considered as the formal ground of all reasoning 169 Sec.8. Grounds of our belief in Uniformity 173

CHAPTER XIV

CAUSATION

Sec.1. The most important aspect of Uniformity in relation to Induction is Causation 174 Sec.2. Definition of "Cause" explained: five marks of Causation 175 Sec.3. How strictly the conception of Cause can be applied depends upon the subject under investigation 183 Sec.4. Scientific conception of Effect. Plurality of Causes 185 Sec.5. Some condition, but not the whole cause, may long precede the Effect; and some co-effect, but not the whole effect, may long survive the Cause 187 Sec.6. Mechanical Causes and the homogeneous Intermixture of Effects; Chemical Causes and the heteropathic Intermixture of Effects 188 Sec.7. Tendency, Resultant, Counteraction, Elimination, Resolution, Analysis, Reciprocity 189

CHAPTER XV

INDUCTIVE METHOD

Sec.1. Outline of Inductive investigation 192 Sec.2. Induction defined 196 Sec.3. "Perfect Induction" 196 Sec.4. Imperfect Induction methodical or immethodical 197 Sec.5. Observation and Experiment, the material ground of Induction, compared 198 Sec.6. The principle of Causation is the formal ground of Induction 201 Sec.7. The Inductive Canons are derived from the principle of Causation, the more readily to detect it in facts observed 202

CHAPTER XVI

THE CANONS OF DIRECT INDUCTION

Sec.1. The Canon of Agreement 206 Negative Instances (p. 208); Plurality of Causes (p. 208) Agreement may show connection without direct Causation (p. 209) Sec.2. The Canon of Agreement in Presence and in Absence 212 It tends to disprove a Plurality of Causes (p. 213) Sec.3. The Canon of Difference 216 May be applied to observations (p. 221) Sec.4. The Canon of Variations 222 How related to Agreement and Difference (p. 222); The Graphic Method (p. 227); Critical points (p. 230); Progressive effects (p. 231); Gradations (p. 231) Sec.5. The Canon of Residues 232

CHAPTER XVII

COMBINATION OF INDUCTION WITH DEDUCTION

Sec.1. Deductive character of Formal Induction 236 Sec.2. Further complication of Deduction with Induction 238 Sec.3. The Direct Deductive (or Physical) Method 240 Sec.4. Opportunities of Error in the Physical Method 243 Sec.5. The Inverse Deductive (or Historical) Method 246 Sec.6. Precautions in using the Historical Method 251 Sec.7. The Comparative Method 255 Sec.8. Historical Evidence 261

CHAPTER XVIII

HYPOTHESES

Sec.1. Hypothesis defined and distinguished from Theory 266 Sec.2. An Hypothesis must be verifiable 268 Sec.3. Proof of Hypotheses 270 (1) Must an hypothetical agent be directly observable? (p. 270); Vera causa (p. 271) (2) An Hypothesis must be adequate to its pretensions (p. 272); Exceptio probat regulam (p. 274) (3) Every competing Hypothesis must be excluded (p. 275); Crucial instance (p. 277) (4) Hypotheses must agree with the laws of Nature (p. 279) Sec.4. Hypotheses necessary in scientific investigation 280 Sec.5. The Method of Abstractions 283 Method of Limits (p. 284); In what sense all knowledge is hypothetical (p. 286)

CHAPTER XIX

LAWS CLASSIFIED; EXPLANATION; CO-EXISTENCE; ANALOGY

Sec.1. Axioms; Primary Laws; Secondary Laws, Derivative or Empirical; Facts 288 Sec.2. Secondary Laws either Invariable or Approximate Generalisations 292 Sec.3. Secondary Laws trustworthy only in 'Adjacent Cases' 293 Sec.4. Secondary Laws of Succession or of Co-existence 295 Natural Kinds (p. 296); Co-existence of concrete things to be deduced from Causation (p. 297) Sec.5. Explanation consists in tracing resemblance, especially of Causation 299 Sec.6. Three modes of Explanation 302 Analysis (p. 302); Concatenation (p. 302); Subsumption (p. 303) Sec.7. Limits of Explanation 305 Sec.8. Analogy 307

CHAPTER XX

PROBABILITY

Sec.1. Meaning of Chance and Probability 310 Sec.2. Probability as a fraction or proportion 312 Sec.3. Probability depends upon experience and statistics 313 Sec.4. It is a kind of Induction, and pre-supposes Causation 315 Sec.5. Of Averages and the Law of Error 318 Sec.6. Interpretation of probabilities 324 Personal Equation (p. 325); meaning of 'Expectation' (p. 325) Sec.7. Rules of the combination of Probabilities 325 Detection of a hidden Cause (p. 326); oral tradition (p. 327); circumstantial and analogical evidence (p. 328)

CHAPTER XXI

DIVISION AND CLASSIFICATION

Sec.1. Classification, scientific, special and popular 330 Sec.2. Uses of classification 332 Sec.3. Classification, Deductive and Inductive 334 Sec.4. Division, or Deductive Classification: its Rules 335 Sec.5. Rules for testing a Division 337 Sec.6. Inductive Classification 339 Sec.7. Difficulty of Natural Classification 341 Sec.8. Darwin's influence on the theory of Classification 342 Sec.9. Classification of Inorganic Bodies also dependent on Causation 346

CHAPTER XXII

NOMENCLATURE, DEFINITION, PREDICABLES

Sec.1. Precise thinking needs precise language 348 Sec.2. Nomenclature and Terminology 349 Sec.3. Definition 352 Sec.4. Rules for testing a Definition 352 Sec.5. Every Definition is relative to a Classification 353 Sec.6. Difficulties of Definition 356 Proposals to substitute the Type (p. 356) Sec.7. The Limits of Definition 357 Sec.8. The five Predicables 358 Porphyry's Tree (p. 361) Sec.9. Realism and Nominalism 364 Sec.10. The Predicaments 366

CHAPTER XXIII

DEFINITION OF COMMON TERMS

Sec.1. The rigour of scientific method must be qualified 369 Sec.2. Still, Language comprises the Nomenclature of an imperfect Classification, to which every Definition is relative; 370 Sec.3. and an imperfect Terminology 374 Sec.4. Maxims and precautions of Definition 375 Sec.5. Words of common language in scientific use 378 Sec.6. How Definitions affect the cogency of arguments 380

CHAPTER XXIV

FALLACIES

Sec.1. Fallacy defined and divided 385 Sec.2. Formal Fallacies of Deduction 385 Sec.3. Formal Fallacies of Induction 388 Sec.4. Material Fallacies classified 394 Sec.5. Fallacies of Observation 394 Sec.6. Begging the Question 396 Sec.7. Surreptitious Conclusion 398 Sec.8. Ambiguity 400 Sec.9. Fallacies, a natural rank growth of the Human mind, not easy to classify, or exterminate 403

QUESTIONS 405



LOGIC



CHAPTER I

INTRODUCTORY

Sec. 1. Logic is the science that explains what conditions must be fulfilled in order that a proposition may be proved, if it admits of proof. Not, indeed, every such proposition; for as to those that declare the equality or inequality of numbers or other magnitudes, to explain the conditions of their proof belongs to Mathematics: they are said to be quantitative. But as to all other propositions, called qualitative, like most of those that we meet with in conversation, in literature, in politics, and even in sciences so far as they are not treated mathematically (say, Botany and Psychology); propositions that merely tell us that something happens (as that salt dissolves in water), or that something has a certain property (as that ice is cold): as to these, it belongs to Logic to show how we may judge whether they are true, or false, or doubtful. When propositions are expressed with the universality and definiteness that belong to scientific statements, they are called laws; and laws, so far as they are not laws of quantity, are tested by the principles of Logic, if they at all admit of proof.

But it is plain that the process of proving cannot go on for ever; something must be taken for granted; and this is usually considered to be the case (1) with particular facts that can only be perceived and observed, and (2) with those highest laws that are called 'axioms' or 'first principles,' of which we can only say that we know of no exceptions to them, that we cannot help believing them, and that they are indispensable to science and to consistent thought. Logic, then, may be briefly defined as the science of proof with respect to qualitative laws and propositions, except those that are axiomatic.

Sec. 2. Proof may be of different degrees or stages of completeness. Absolute proof would require that a proposition should be shown to agree with all experience and with the systematic explanation of experience, to be a necessary part of an all-embracing and self-consistent philosophy or theory of the universe; but as no one hitherto has been able to frame such a philosophy, we must at present put up with something less than absolute proof. Logic, assuming certain principles to be true of experience, or at least to be conditions of consistent discourse, distinguishes the kinds of propositions that can be shown to agree with these principles, and explains by what means the agreement can best be exhibited. Such principles are those of Contradiction (chap. vi.), the Syllogism (chap. ix.), Causation (chap. xiv.), and Probabilities (chap. xx.). To bring a proposition or an argument under them, or to show that it agrees with them, is logical proof.

The extent to which proof is requisite, again, depends upon the present purpose: if our aim be general truth for its own sake, a systematic investigation is necessary; but if our object be merely to remove some occasional doubt that has occurred to ourselves or to others, it may be enough to appeal to any evidence that is admitted or not questioned. Thus, if a man doubts that some acids are compounds of oxygen, but grants that some compounds of oxygen are acids, he may agree to the former proposition when you point out that it has the same meaning as the latter, differing from it only in the order of the words. This is called proof by immediate inference.

Again, suppose that a man holds in his hand a piece of yellow metal, which he asserts to be copper, and that we doubt this, perhaps suggesting that it is really gold. Then he may propose to dip it in vinegar; whilst we agree that, if it then turns green, it is copper and not gold. On trying this experiment the metal does turn green; so that we may put his argument in this way:—

Whatever yellow metal turns green in vinegar is copper; This yellow metal turns green in vinegar; Therefore, this yellow metal is copper.

Such an argument is called proof by mediate inference; because one cannot see directly that the yellow metal is copper; but it is admitted that any yellow metal is copper that turns green in vinegar, and we are shown that this yellow metal has that property.

Now, however, it may occur to us, that the liquid in which the metal was dipped was not vinegar, or not pure vinegar, and that the greenness was due to the impurity. Our friend must thereupon show by some means that the vinegar was pure; and then his argument will be that, since nothing but the vinegar came in contact with the metal, the greenness was due to the vinegar; or, in other words, that contact with that vinegar was the cause of the metal turning green.

Still, on second thoughts, we may suspect that we had formerly conceded too much; we may reflect that, although it had often been shown that copper turned green in vinegar, whilst gold did not, yet the same might not always happen. May it not be, we might ask, that just at this moment, and perhaps always for the future gold turns, and will turn green in vinegar, whilst copper does not and never will again? He will probably reply that this is to doubt the uniformity of causation: he may hope that we are not serious: he may point out to us that in every action of our life we take such uniformity for granted. But he will be obliged to admit that, whatever he may say to induce us to assent to the principle of Nature's uniformity, his arguments will not amount to logical proof, because every argument in some way assumes that principle. He has come, in fact, to the limits of Logic. Just as Euclid does not try to prove that 'two magnitudes equal to the same third are equal to one another,' so the Logician (as such) does not attempt to prove the uniformity of causation and the other principles of his science.

Even when our purpose is to ascertain some general truth, the results of systematic inquiry may have various degrees of certainty. If Logic were confined to strict demonstration, it would cover a narrow field. The greater part of our conclusions can only be more or less probable. It may, indeed, be maintained, not unreasonably, that no judgments concerning matters of fact can be more than probable. Some say that all scientific results should be considered as giving the average of cases, from which deviations are to be expected. Many matters can only be treated statistically and by the methods of Probability. Our ordinary beliefs are adopted without any methodical examination. But it is the aim, and it is characteristic, of a rational mind to distinguish degrees of certainty, and to hold each judgment with the degree of confidence that it deserves, considering the evidence for and against it. It takes a long time, and much self-discipline, to make some progress toward rationality; for there are many causes of belief that are not good grounds for it—have no value as evidence. Evidence consists of (1) observation; (2) reasoning checked by observation and by logical principles; (3) memory—often inaccurate; (4) testimony—often untrustworthy, but indispensable, since all we learn from books or from other men is taken on testimony; (5) the agreement of all our results. On the other hand, belief is caused by many influences that are not evidence at all: such are (1) desire, which makes us believe in whatever serves our purpose; fear and suspicion, which (paradoxically) make us believe in whatever seems dangerous; (2) habit, which resists whatever disturbs our prejudices; (3) vanity, which delights to think oneself always right and consistent and disowns fallibility; (4) imitativeness, suggestibility, fashion, which carry us along with the crowd. All these, and nobler things, such as love and fidelity, fix our attention upon whatever seems to support our prejudices, and prevent our attending to any facts or arguments that threaten to overthrow them.

Sec. 3. Two departments of Logic are usually recognised, Deduction and Induction; that is, to describe them briefly, proof from principles, and proof from facts. Classification is sometimes made a third department; sometimes its topics are distributed amongst those of the former two. In the present work the order adopted is, Deduction in chaps. ii. to xiii.; Induction in chaps. xiii. to xx.; and, lastly, Classification. But such divisions do not represent fundamentally distinct and opposed aspects of the science. For although, in discussing any question with an opponent who makes admissions, it may be possible to combat his views with merely deductive arguments based upon his admissions; yet in any question of general truth, Induction and Deduction are mutually dependent and imply one another.

This may be seen in one of the above examples. It was argued that a certain metal must be copper, because every metal is copper that turns green when dipped in vinegar. So far the proof appealed to a general proposition, and was deductive. But when we ask how the general proposition is known to be true, experiments or facts must be alleged; and this is inductive evidence. Deduction then depends on Induction. But if we ask, again, how any number of past experiments can prove a general proposition, which must be good for the future as well as for the past, the uniformity of causation is invoked; that is, appeal is made to a principle, and that again is deductive proof. Induction then depends upon Deduction.

We may put it in this way: Deduction depends on Induction, if general propositions are only known to us through the facts: Induction depends on Deduction, because one fact can never prove another, except so far as what is true of the one is true of the other and of any other of the same kind; and because, to exhibit this resemblance of the facts, it must be stated in a general proposition.

Sec. 4. The use of Logic is often disputed: those who have not studied it, often feel confident of their ability to do without it; those who have studied it, are sometimes disgusted with what they consider to be its superficial analysis of the grounds of evidence, or needless technicality in the discussion of details. As to those who, not having studied Logic, yet despise it, there will be time enough to discuss its utility with them, when they know something about it; and as for those who, having studied it, turn away in disgust, whether they are justified every man must judge for himself, when he has attained to equal proficiency in the subject. Meanwhile, the following considerations may be offered in its favour:

Logic states, and partly explains and applies, certain abstract principles which all other sciences take for granted; namely, the axioms above mentioned—the principles of Contradiction, of the Syllogism and of Causation. By exercising the student in the apprehension of these truths, and in the application of them to particular propositions, it educates the power of abstract thought. Every science is a model of method, a discipline in close and consecutive thinking; and this merit Logic ought to possess in a high degree.

For ages Logic has served as an introduction to Philosophy that is, to Metaphysics and speculative Ethics. It is of old and honourable descent: a man studies Logic in very good company. It is the warp upon which nearly the whole web of ancient, mediaeval and modern Philosophy is woven. The history of thought is hardly intelligible without it.

As the science of proof, Logic gives an account of the general nature of evidence deductive and inductive, as applied in the physical and social sciences and in the affairs of life. The general nature of such evidence: it would be absurd of the logician to pretend to instruct the chemist, economist and merchant, as to the special character of the evidence requisite in their several spheres of judgment. Still, by investigating the general conditions of proof, he sets every man upon his guard against the insufficiency of evidence.

One application of the science of proof deserves special mention: namely, to that department of Rhetoric which has been the most developed, relating to persuasion by means of oratory, leader-writing, or pamphleteering. It is usually said that Logic is useful to convince the judgment, not to persuade the will: but one way of persuading the will is to convince the judgment that a certain course is advantageous; and although this is not always the readiest way, it is the most honourable, and leads to the most enduring results. Logic is the backbone of Rhetoric.

It has been disputed whether Logic is a science or an art; and, in fact, it may be considered in both ways. As a statement of general truths, of their relations to one another, and especially to the first principles, it is a science; but it is an art when, regarding truth as an end desired, it points out some of the means of attaining it—namely, to proceed by a regular method, to test every judgment by the principles of Logic, and to distrust whatever cannot be made consistent with them. Logic does not, in the first place, teach us to reason. We learn to reason as we learn to walk and talk, by the natural growth of our powers with some assistance from friends and neighbours. The way to develop one's power of reasoning is, first, to set oneself problems and try to solve them. Secondly, since the solving of a problem depends upon one's ability to call to mind parallel cases, one must learn as many facts as possible, and keep on learning all one's life; for nobody ever knew enough. Thirdly one must check all results by the principles of Logic. It is because of this checking, verifying, corrective function of Logic that it is sometimes called a Regulative or Normative Science. It cannot give any one originality or fertility of invention; but it enables us to check our inferences, revise our conclusions, and chasten the vagaries of ambitious speculation. It quickens our sense of bad reasoning both in others and in ourselves. A man who reasons deliberately, manages it better after studying Logic than he could before, if he is sincere about it and has common sense.

Sec. 5. The relation of Logic to other sciences:

(a) Logic is regarded by Spencer as co-ordinate with Mathematics, both being Abstract Sciences—that is, sciences of the relations in which things stand to one another, whatever the particular things may be that are so related; and this view seems to be, on the whole, just—subject, however, to qualifications that will appear presently.

Mathematics treats of the relations of all sorts of things considered as quantities, namely, as equal to, or greater or less than, one another. Things may be quantitatively equal or unequal in degree, as in comparing the temperature of bodies; or in duration; or in spatial magnitude, as with lines, superficies, solids; or in number. And it is assumed that the equality or inequality of things that cannot be directly compared, may be proved indirectly on the assumption that 'things equal to the same thing are equal,' etc.

Logic also treats of the relations of all sorts of things, but not as to their quantity. It considers (i) that one thing may be like or unlike another in certain attributes, as that iron is in many ways like tin or lead, and in many ways unlike carbon or sulphur: (ii) that attributes co-exist or coinhere (or do not) in the same subject, as metallic lustre, hardness, a certain atomic weight and a certain specific gravity coinhere in iron: and (iii) that one event follows another (or is the effect of it), as that the placing of iron in water causes it to rust. The relations of likeness and of coinherence are the ground of Classification; for it is by resemblance of coinhering attributes that things form classes: coinherence is the ground of judgments concerning Substance and Attribute, as that iron is metallic; and the relation of succession, in the mode of Causation, is the chief subject of the department of Induction. It is usual to group together these relations of attributes and of order in time, and call them qualitative, in order to contrast them with the quantitative relations which belong to Mathematics. And it is assumed that qualitative relations of things, when they cannot be directly perceived, may be proved indirectly by assuming the axiom of the Syllogism (chap. ix.) and the law of Causation (chap. xiv.).

So far, then, Logic and Mathematics appear to be co-ordinate and distinct sciences. But we shall see hereafter that the satisfactory treatment of that special order of events in time which constitutes Causation, requires a combination of Logic with Mathematics; and so does the treatment of Probability. And, again, Logic may be said to be, in a certain sense, 'prior to' or 'above' Mathematics as usually treated. For the Mathematics assume that one magnitude must be either equal or unequal to another, and that it cannot be both equal and unequal to it, and thus take for granted the principles of Contradiction and Excluded Middle; but the statement and elucidation of these Principles are left to Logic (chap. vi.). The Mathematics also classify and define magnitudes, as (in Geometry) triangles, squares, cubes, spheres; but the principles of classification and definition remain for Logic to discuss.

(b) As to the concrete Sciences, such as Astronomy, Chemistry, Zoology, Sociology—Logic (as well as Mathematics) is implied in them all; for all the propositions of which they consist involve causation, co-existence, and class-likeness. Logic is therefore said to be prior to them or above them: meaning by 'prior' not that it should be studied earlier, for that is not a good plan; meaning by 'above' not in dignity, for distinctions of dignity amongst liberal studies are absurd. But it is a philosophical idiom to call the abstract 'prior to,' or 'higher than,' the concrete (see Porphyry's Tree, chap. xxii. Sec. 8); and Logic is more abstract than Astronomy or Sociology. Philosophy may thank that idiom for many a foolish notion.

(c) But, as we have seen, Logic does not investigate the truth, trustworthiness, or validity of its own principles; nor does Mathematics: this task belongs to Metaphysics, or Epistemology, the criticism of knowledge and beliefs.

Logic assumes, for example, that things are what to a careful scrutiny they seem to be; that animals, trees, mountains, planets, are bodies with various attributes, existing in space and changing in time; and that certain principles, such as Contradiction and Causation, are true of things and events. But Metaphysicians have raised many plausible objections to these assumptions. It has been urged that natural objects do not really exist on their own account, but only in dependence on some mind that contemplates them, and that even space and time are only our way of perceiving things; or, again, that although things do really exist on their own account, it is in an entirely different way from that in which we know them. As to the principle of Contradiction—that if an object has an attribute, it cannot at the same time and in the same way be without it (e.g., if an animal is conscious, it is false that it is not conscious)—it has been contended that the speciousness of this principle is only due to the obtuseness of our minds, or even to the poverty of language, which cannot make the fine distinctions that exist in Nature. And as to Causation, it is sometimes doubted whether events always have physical causes; and it is often suggested that, granting they have physical causes, yet these are such as we can neither perceive nor conceive; belonging not to the order of Nature as we know it, but to the secret inwardness and reality of Nature, to the wells and reservoirs of power, not to the spray of the fountain that glitters in our eyes—'occult causes,' in short. Now these doubts and surmises are metaphysical spectres which it remains for Metaphysics to lay. Logic has no direct concern with them (although, of course, metaphysical discussion is expected to be logical), but keeps the plain path of plain beliefs, level with the comprehension of plain men. Metaphysics, as examining the grounds of Logic itself, is sometimes regarded as 'the higher Logic'; and, certainly, the study of Metaphysics is necessary to every one who would comprehend the nature and functions of Logic, or the place of his own mind and of Reason in the world.

(d) The relation of Logic to Psychology will be discussed in the next section.

(e) As a Regulative Science, pointing out the conditions of true inference (within its own sphere), Logic is co-ordinate with (i) Ethics, considered as assigning the conditions of right conduct, and with (ii) AEsthetics, considered as determining the principles of criticism and good taste.

Sec. 6. Three principal schools of Logicians are commonly recognised: Nominalist, Conceptualist, and Materialist, who differ as to what it is that Logic really treats of: the Nominalists say, 'of language'; the Conceptualists, 'of thought'; the Materialists, 'of relations of fact.' To illustrate these positions let us take authors who, if some of them are now neglected, have the merit of stating their contrasted views with a distinctness that later refinements tend to obscure.

(a) Whately, a well-known Nominalist, regarded Logic as the Science and Art of Reasoning, but at the same time as "entirely conversant about language"; that is to say, it is the business of Logic to discover those modes of statement which shall ensure the cogency of an argument, no matter what may be the subject under discussion. Thus, All fish are cold-blooded, .'. some cold-blooded things are fish: this is a sound inference by the mere manner of expression; and equally sound is the inference, All fish are warm-blooded, .'. some warm-blooded things are fish. The latter proposition may be false, but it follows; and (according to this doctrine) Logic is only concerned with the consistent use of words: the truth or falsity of the proposition itself is a question for Zoology. The short-coming of extreme Nominalism lies in speaking of language as if its meaning were unimportant. But Whately did not intend this: he was a man of great penetration and common-sense.

(b) Hamilton, our best-known Conceptualist, defined Logic as the science of the "formal laws of thought," and "of thought as thought," that is, without regard to the matter thought about. Just as Whately regarded Logic as concerned merely with cogent forms of statement, so Hamilton treated it as concerned merely with the necessary relations of thought. This doctrine is called Conceptualism, because the simplest element of thought is the Concept; that is, an abstract idea, such as is signified by the word man, planet, colour, virtue; not a representative or generic image, but the thought of all attributes common to any class of things. Men, planets, colours, virtuous actions or characters, have, severally, something in common on account of which they bear these general names; and the thought of what they have in common, as the ground of these names, is a Concept. To affirm or deny one concept of another, as Some men are virtuous, or No man is perfectly virtuous, is to form a Judgment, corresponding to the Proposition of which the other schools of Logic discourse. Conceptualism, then, investigates the conditions of consistent judgment.

To distinguish Logic from Psychology is most important in connection with Conceptualism. Concepts and Judgments being mental acts, or products of mental activity, it is often thought that Logic must be a department of Psychology. It is recognised of course, that Psychology deals with much more than Logic does, with sensation, pleasure and pain, emotion, volition; but in the region of the intellect, especially in its most deliberate and elaborate processes, namely, conception, judgment, and reasoning, Logic and Psychology seem to occupy common ground. In fact, however, the two sciences have little in common except a few general terms, and even these they employ in different senses. It is usual to point out that Psychology tries to explain the subjective processes of conception, judgment and reasoning, and to give their natural history; but that Logic is wholly concerned with the results of such processes, with concepts, judgments and reasonings, and merely with the validity of the results, that is, with their truth or consistency; whilst Psychology has nothing to do with their validity, but only with their causes. Besides, the logical judgment (in Formal Logic at least) is quite a different thing from the psychological: the latter involves feeling and belief, whereas the former is merely a given relation of concepts. S is P: that is a model logical judgment; there can be no question of believing it; but it is logically valid if M is P and S is M. When, again, in Logic, one deals with belief, it depends upon evidence; whereas, in Psychology belief is shown to depend upon causes which may have evidentiary value or may not; for Psychology explains quite impartially the growth of scientific insight and the growth of prejudice.

(c) Mill, Bain, and Venn are the chief Materialist logicians; and to guard against the error of confounding Materialism in Logic with the ontological doctrine that nothing exists but Matter, it may suffice to remember that in Metaphysics all these philosophers are Idealists. Materialism in Logic consists in regarding propositions as affirming or denying relations (cf. Sec. 5) between matters-of-fact in the widest sense; not only physical facts, but ideas, social and moral relations; it consists, in short, in attending to the meaning of propositions. It treats the first principles of Contradiction and Causation as true of things so far as they are known to us, and not merely as conditions or tendencies of thought; and it takes these principles as conditions of right thinking, because they seem to hold good of Nature and human life.

To these differences of opinion it will be necessary to recur in the next chapter (Sec. 4); but here I may observe that it is easy to exaggerate their importance in Logic. There is really little at issue between schools of logicians as such, and as far as their doctrines run parallel; it is on the metaphysical grounds of their study, or as to its scope and comprehension, that they find a battle-field. The present work generally proceeds upon the third, or Materialist doctrine. If Deduction and Induction are regarded as mutually dependent parts of one science, uniting the discipline of consistent discourse with the method of investigating laws of physical phenomena, the Materialist doctrine, that the principles of Logic are founded on fact, seems to be the most natural way of thinking. But if the unity of Deduction and Induction is not disputed by the other schools, the Materialist may regard them as allies exhibiting in their own way the same body of truths. The Nominalist may certainly claim that his doctrine is indispensable: consistently cogent forms of statement are necessary both to the Conceptualist and to the Materialist; neither the relations of thought nor those of fact can be arrested or presented without the aid of language or some equivalent system of signs. The Conceptualist may urge that the Nominalist's forms of statement and argument exist for the sake of their meaning, namely, judgments and reasonings; and that the Materialist's laws of Nature are only judgments founded upon our conceptions of Nature; that the truth of observations and experiments depends upon our powers of perception; that perception is inseparable from understanding, and that a system of Induction may be constructed upon the axiom of Causation, regarded as a principle of Reason, just as well as by considering it as a law of Nature, and upon much the same lines. The Materialist, admitting all this, may say that a judgment is only the proximate meaning of a proposition, and that the ultimate meaning, the meaning of the judgment itself, is always some matter-of-fact; that the other schools have not hitherto been eager to recognise the unity of Deduction and Induction or to investigate the conditions of trustworthy experiments and observations within the limits of human understanding; that thought is itself a sort of fact, as complex in its structure, as profound in its relations, as subtle in its changes as any other fact, and therefore at least as hard to know; that to turn away from the full reality of thought in perception, and to confine Logic to artificially limited concepts, is to abandon the effort to push method to the utmost and to get as near truth as possible; and that as to Causation being a principle of Reason rather than of Nature, the distinction escapes his apprehension, since Nature seems to be that to which our private minds turn upon questions of Causation for correction and instruction; so that if he does not call Nature the Universal Reason, it is because he loves severity of style.



CHAPTER II

GENERAL ANALYSIS OF PROPOSITIONS

Sec. 1. Since Logic discusses the proof or disproof, or (briefly) the testing of propositions, we must begin by explaining their nature. A proposition, then, may first be described in the language of grammar as a sentence indicative; and it is usually expressed in the present tense.

It is true that other kinds of sentences, optative, imperative, interrogative, exclamatory, if they express or imply an assertion, are not beyond the view of Logic; but before treating such sentences, Logic, for greater precision, reduces them to their equivalent sentences indicative. Thus, I wish it were summer may be understood to mean, The coming of summer is an object of my desire. Thou shalt not kill may be interpreted as Murderers are in danger of the judgment. Interrogatories, when used in argument, if their form is affirmative, have negative force, and affirmative force if their form is negative. Thus, Do hypocrites love virtue? anticipates the answer, No. Are not traitors the vilest of mankind? anticipates the answer, Yes. So that the logical form of these sentences is, Hypocrites are not lovers of virtue; Traitors are the vilest of mankind. Impersonal propositions, such as It rains, are easily rendered into logical forms of equivalent meaning, thus: Rain is falling; or (if that be tautology), The clouds are raining. Exclamations may seem capricious, but are often part of the argument. Shade of Chatham! usually means Chatham, being aware of our present foreign policy, is much disgusted. It is in fact, an appeal to authority, without the inconvenience of stating what exactly it is that the authority declares.

Sec. 2. But even sentences indicative may not be expressed in the way most convenient to logicians. Salt dissolves in water is a plain enough statement; but the logician prefers to have it thus: Salt is soluble in water. For he says that a proposition is analysable into three elements: (1) a Subject (as Salt) about which something is asserted or denied; (2) a Predicate (as soluble in water) which is asserted or denied of the Subject, and (3) the Copula (is or are, or is not or are not), the sign of relation between the Subject and Predicate. The Subject and Predicate are called the Terms of the proposition: and the Copula may be called the sign of predication, using the verb 'to predicate' indefinitely for either 'to affirm' or 'to deny.' Thus S is P means that the term P is given as related in some way to the term S. We may, therefore, further define a Proposition as 'a sentence in which one term is predicated of another.'

In such a proposition as Salt dissolves, the copula (is) is contained in the predicate, and, besides the subject, only one element is exhibited: it is therefore said to be secundi adjacentis. When all three parts are exhibited, as in Salt is soluble, the proposition is said to be tertii adjacentis.

For the ordinary purposes of Logic, in predicating attributes of a thing or class of things, the copula is, or is not, sufficiently represents the relation of subject and predicate; but when it is desirable to realise fully the nature of the relation involved, it may be better to use a more explicit form. Instead of saying Salt—is—soluble, we may say Solubility—coinheres with—the nature of salt, or The putting of salt in water—is a cause of—its dissolving: thus expanding the copula into a full expression of the relation we have in view, whether coinherence or causation.

Sec. 3. The sentences of ordinary discourse are, indeed, for the most part, longer and more complicated than the logical form of propositions; it is in order to prove them, or to use them in the proof of other propositions, that they are in Logic reduced as nearly as possible to such simple but explicit expressions as the above (tertii adjacentis). A Compound Proposition, reducible to two or more simple ones, is said to be exponible.

The modes of compounding sentences are explained in every grammar-book. One of the commonest forms is the copulative, such as Salt is both savoury and wholesome, equivalent to two simple propositions: Salt is savoury; Salt is wholesome. Pure water is neither sapid nor odorous, equivalent to Water is not sapid; Water is not odorous. Or, again, Tobacco is injurious, but not when used in moderation, equivalent to Much tobacco is injurious; a little is not.

Another form of Exponible is the Exceptive, as Kladderadatsch is published daily, except on week-days, equivalent to Kladderadatsch is published on Sunday; it is not published any other day. Still another Exponible is the Exclusive, as Only men use fire, equivalent to Men are users of fire; No other animals are. Exceptive and exclusive sentences are, however, equivalent forms; for we may say, Kladderadatsch is published only on Sunday; and No animals use fire, except men.

There are other compound sentences that are not exponible, since, though they contain two or more verbal clauses, the construction shows that these are inseparable. Thus, If cats are scarce, mice are plentiful, contains two verbal clauses; but if cats are scarce is conditional, not indicative; and mice are plentiful is subject to the condition that cats are scarce. Hence the whole sentence is called a Conditional Proposition. For the various forms of Conditional Propositions see chap. v. Sec. 4.

But, in fact, to find the logical force of recognised grammatical forms is the least of a logician's difficulties in bringing the discourses of men to a plain issue. Metaphors, epigrams, innuendoes and other figures of speech present far greater obstacles to a lucid reduction whether for approval or refutation. No rules can be given for finding everybody's meaning. The poets have their own way of expressing themselves; sophists, too, have their own way. And the point often lies in what is unexpressed. Thus, "barbarous nations make, the civilised write history," means that civilised nations do not make history, which none is so brazen as openly to assert. Or, again, "Alcibiades is dead, but X is still with us"; the whole meaning of this 'exponible' is that X would be the lesser loss to society. Even an epithet or a suffix may imply a proposition: This personage may mean X is a pretentious nobody.

How shall we interpret such illusive predications except by cultivating our literary perceptions, by reading the most significant authors until we are at home with them? But, no doubt, to disentangle the compound propositions, and to expand the abbreviations of literature and conversation, is a useful logical exercise. And if it seem a laborious task thus to reduce to its logical elements a long argument in a speech or treatise, it should be observed that, as a rule, in a long discourse only a few sentences are of principal importance to the reasoning, the rest being explanatory or illustrative digression, and that a close scrutiny of these cardinal sentences will frequently dispense us from giving much attention to the rest.

Sec. 4. But now, returning to the definition of a Proposition given in Sec. 2, that it is 'a sentence in which one term is predicated of another,' we must consider what is the import of such predication. For the definition, as it stands, seems to be purely Nominalist. Is a proposition nothing more than a certain synthesis of words; or, is it meant to correspond with something further, a synthesis of ideas, or a relation of facts?

Conceptualist logicians, who speak of judgments instead of propositions, of course define the judgment in their own language. According to Hamilton, it is "a recognition of the relation of congruence or confliction in which two concepts stand to each other." To lighten the sentence, I have omitted one or two qualifications (Hamilton's Lectures on Logic, xiii.). "Thus," he goes on "if we compare the thoughts water, iron, and rusting, we find them congruent, and connect them into a single thought, thus: water rusts iron—in that case we form a judgment." When a judgment is expressed in words, he says, it is called a proposition.

But has a proposition no meaning beyond the judgment it expresses? Mill, who defines it as "a portion of discourse in which a predicate is affirmed or denied of a subject" (Logic, Book 1., chap. iv. Sec. 1.), proceeds to inquire into the import of propositions (Book 1., chap. v.), and finds three classes of them: (a) those in which one proper name is predicated of another; and of these Hobbes's Nominalist definition is adequate, namely, that a proposition asserts or denies that the predicate is a name for the same thing as the subject, as Tully is Cicero.

(b) Propositions in which the predicate means a part (or the whole) of what the subject means, as Horses are animals, Man is a rational animal. These are Verbal Propositions (see below: chap. v. Sec. 6), and their import consists in affirming or denying a coincidence between the meanings of names, as The meaning of 'animal' is part of the meaning of 'horse.' They are partial or complete definitions.

But (c) there are also Real Propositions, whose predicates do not mean the same as their subjects, and whose import consists in affirming or denying one of five different kinds of matter of fact: (1) That the subject exists, or does not; as if we say The bison exists, The great auk is extinct. (2) Co-existence, as Man is mortal; that is, the being subject to death coinheres with the qualities on account of which we call certain objects men. (3) Succession, as Night follows day. (4) Causation (a particular kind of Succession), as Water rusts iron. (5) Resemblance, as The colour of this geranium is like that of a soldier's coat, or A = B.

On comparing this list of real predications with the list of logical relations given above (chap. i. Sec. 5 (a)), it will be seen that the two differ only in this, that I have there omitted simple Existence. Nothing simply exists, unrelated either in Nature or in knowledge. Such a proposition as The bison exists may, no doubt, be used in Logic (subject to interpretation) for the sake of custom or for the sake of brevity; but it means that some specimens are still to be found in N. America, or in Zoological gardens.

Controversy as to the Import of Propositions really turns upon a difference of opinion as to the scope of Logic and the foundations of knowledge. Mill was dissatisfied with the "congruity" of concepts as the basis of a judgment. Clearly, mere congruity does not justify belief. In the proposition Water rusts iron, the concepts water, rust and iron may be congruous, but does any one assert their connection on that ground? In the proposition Murderers are haunted by the ghosts of their victims, the concepts victim, murderer, ghost have a high degree of congruity; yet, unfortunately, I cannot believe it: there seems to be no such cheap defence of innocence. Now, Mill held that Logic is concerned with the grounds of belief, and that the scope of Logic includes Induction as well as Deduction; whereas, according to Hamilton, Induction is only Modified Logic, a mere appendix to the theory of the "forms of thought as thought." Indeed, Mill endeavoured in his Logic to probe the grounds of belief deeper than usual, and introduced a good deal of Metaphysics—either too much or not enough—concerning the ground of axioms. But, at any rate, his great point was that belief, and therefore (for the most part) the Real Proposition, is concerned not merely with the relations of words, or even of ideas, but with matters of fact; that is, both propositions and judgments point to something further, to the relations of things which we can examine, not merely by thinking about them (comparing them in thought), but by observing them with the united powers of thought and perception. This is what convinces us that water rusts iron: and the difficulty of doing this is what prevents our feeling sure that murderers are haunted by the ghosts of their victims. Hence, although Mill's definition of a proposition, given above, is adequate for propositions in general; yet that kind of proposition (the Real) with regard to which Logic (in Mill's view) investigates the conditions of proof, may be more explicitly and pertinently defined as 'a predication concerning the relation of matters of fact.'

Sec. 5. This leads to a very important distinction to which we shall often have to refer in subsequent pages—namely, the distinction between the Form and the Matter of a proposition or of an argument. The distinction between Form and Matter, as it is ordinarily employed, is easily understood. An apple growing in the orchard and a waxen apple on the table may have the same shape or form, but they consist of different materials; two real apples may have the same shape, but contain distinct ounces of apple-stuff, so that after one is eaten the other remains to be eaten. Similarly, tables may have the same shape, though one be made of marble, another of oak, another of iron. The form is common to several things, the matter is peculiar to each. Metaphysicians have carried the distinction further: apples, they say, may have not only the same outward shape, but the same inward constitution, which, therefore, may be called the Form of apple-stuff itself—namely, a certain pulpiness, juiciness, sweetness, etc.; qualities common to all dessert apples: yet their Matter is different, one being here, another there—differing in place or time, if in nothing else. The definition of a species is the form of every specimen of it.

To apply this distinction to the things of Logic: it is easy to see how two propositions may have the same Form but different Matter: not using 'Form' in the sense of 'shape,' but for that which is common to many things, in contrast with that which is peculiar to each. Thus, All male lions are tawny and All water is liquid at 50 deg. Fahrenheit, are two propositions that have the same form, though their matter is entirely different. They both predicate something of the whole of their subjects, though their subjects are different, and so are the things predicated of them. Again, All male lions have tufted tails and All male lions have manes, are two propositions having the same form and, in their subjects, the same matter, but different matter in their predicates. If, however, we take two such propositions as these: All male lions have manes and Some male lions have manes, here the matter is the same in both, but the form is different—in the first, predication is made concerning every male lion; in the second of only some male lions; the first is universal, the second is particular. Or, again, if we take Some tigers are man-eaters and Some tigers are not man-eaters, here too the matter is the same, but the form is different; for the first proposition is affirmative, whilst the second is negative.

Sec. 6. Now, according to Hamilton and Whately, pure Logic has to do only with the Form of propositions and arguments. As to their Matter, whether they are really true in fact, that is a question, they said, not for Logic, but for experience, or for the special sciences. But Mill desired so to extend logical method as to test the material truth of propositions: he thought that he could expound a method by which experience itself and the conclusions of the special sciences may be examined.

To this method it may be objected, that the claim to determine Material Truth takes for granted that the order of Nature will remain unchanged, that (for example) water not only at present is a liquid at 50 deg. Fahrenheit, but will always be so; whereas (although we have no reason to expect such a thing) the order of Nature may alter—it is at least supposable—and in that event water may freeze at such a temperature. Any matter of fact, again, must depend on observation, either directly, or by inference—as when something is asserted about atoms or ether. But observation and material inference are subject to the limitations of our faculties; and however we may aid observation by microscopes and micrometers, it is still observation; and however we may correct our observations by repetition, comparison and refined mathematical methods of making allowances, the correction of error is only an approximation to accuracy. Outside of Formal Reasoning, suspense of judgment is your only attitude.

But such objections imply that nothing short of absolute truth has any value; that all our discussions and investigations in science or social affairs are without logical criteria; that Logic must be confined to symbols, and considered entirely as mental gymnastics. In this book prominence will be given to the character of Logic as a formal science, and it will also be shown that Induction itself may be treated formally; but it will be assumed that logical forms are valuable as representing the actual relations of natural and social phenomena.

Sec. 7. Symbols are often used in Logic instead of concrete terms, not only in Symbolic Logic where the science is treated algebraically (as by Dr. Venn in his Symbolic Logic), but in ordinary manuals; so that it may be well to explain the use of them before going further.

It is a common and convenient practice to illustrate logical doctrines by examples: to show what is meant by a Proposition we may give salt is soluble, or water rusts iron: the copulative exponible is exemplified by salt is savoury and wholesome; and so on. But this procedure has some disadvantages: it is often cumbrous; and it may distract the reader's attention from the point to be explained by exciting his interest in the special fact of the illustration. Clearly, too, so far as Logic is formal, no particular matter of fact can adequately illustrate any of its doctrines. Accordingly, writers on Logic employ letters of the alphabet instead of concrete terms, (say) X instead of salt or instead of iron, and (say) Y instead of soluble or instead of rusted by water; and then a proposition may be represented by X is Y. It is still more usual to represent a proposition by S is (or is not) P, S being the initial of Subject and P of Predicate; though this has the drawback that if we argue—S is P, therefore P is S, the symbols in the latter proposition no longer have the same significance, since the former subject is now the predicate.

Again, negative terms frequently occur in Logic, such as not-water, or not-iron, and then if water or iron be expressed by X, the corresponding negative may be expressed by x; or, generally, if a capital letter stand for a positive term, the corresponding small letter represents the negative. The same device may be adopted to express contradictory terms: either of them being X, the other is x (see chap. iv., Sec.Sec. 7-8); or the contradictory terms may be expressed by x and [x], y and [y].

And as terms are often compounded, it may be convenient to express them by a combination of letters: instead of illustrating such a case by boiling water or water that is boiling, we may write XY; or since positive and negative terms may be compounded, instead of illustrating this by water that is not boiling, we may write Xy.

The convenience of this is obvious; but it is more than convenient; for, if one of the uses of Logic be to discipline the power of abstract thought, this can be done far more effectually by symbolic than by concrete examples; and if such discipline were the only use of Logic it might be best to discard concrete illustrations altogether, at least in advanced text-books, though no doubt the practice would be too severe for elementary manuals. On the other hand, to show the practical applicability of Logic to the arguments and proofs of actual life, or even of the concrete sciences, merely symbolic illustration may be not only useless but even misleading. When we speak of politics, or poetry, or species, or the weather, the terms that must be used can rarely have the distinctness and isolation of X and Y; so that the perfunctory use of symbolic illustration makes argument and proof appear to be much simpler and easier matters than they really are. Our belief in any proposition never rests on the proposition itself, nor merely upon one or two others, but upon the immense background of our general knowledge and beliefs, full of circumstances and analogies, in relation to which alone any given proposition is intelligible. Indeed, for this reason, it is impossible to illustrate Logic sufficiently: the reader who is in earnest about the cogency of arguments and the limitation of proofs, and is scrupulous as to the degrees of assent that they require, must constantly look for illustrations in his own knowledge and experience and rely at last upon his own sagacity.



CHAPTER III

OF TERMS AND THEIR DENOTATION

Sec. 1. In treating of Deductive Logic it is usual to recognise three divisions of the subject: first, the doctrine of Terms, words, or other signs used as subjects or predicates; secondly, the doctrine of Propositions, analysed into terms related; and, thirdly, the doctrine of the Syllogism in which propositions appear as the grounds of a conclusion.

The terms employed are either letters of the alphabet, or the words of common language, or the technicalities of science; and since the words of common language are most in use, it is necessary to give some account of common language as subserving the purposes of Logic. It has been urged that we cannot think or reason at all without words, or some substitute for them, such as the signs of algebra; but this is an exaggeration. Minds greatly differ, and some think by the aid of definite and comprehensive picturings, especially in dealing with problems concerning objects in space, as in playing chess blindfold, inventing a machine, planning a tour on an imagined map. Most people draw many simple inferences by means of perceptions, or of mental imagery. On the other hand, some men think a good deal without any continuum of words and without any imagery, or with none that seems relevant to the purpose. Still the more elaborate sort of thinking, the grouping and concatenation of inferences, which we call reasoning, cannot be carried far without language or some equivalent system of signs. It is not merely that we need language to express our reasonings and communicate them to others: in solitary thought we often depend on words—'talk to ourselves,' in fact; though the words or sentences that then pass through our minds are not always fully formed or articulated. In Logic, moreover, we have carefully to examine the grounds (at least the proximate grounds) of our conclusions; and plainly this cannot be done unless the conclusions in question are explicitly stated and recorded.

Conceptualists say that Logic deals not with the process of thinking (which belongs to Psychology) but with its results; not with conceiving but with concepts; not with judging but with judgments. Is the concept self-consistent or adequate? Logic asks; is the judgment capable of proof? Now, it is only by recording our thoughts in language that it becomes possible to distinguish between the process and the result of thought. Without language, the act and the product of thinking would be identical and equally evanescent. But by carrying on the process in language and remembering or otherwise recording it, we obtain a result which may be examined according to the principles of Logic.

Sec. 2. As Logic, then, must give some account of language, it seems desirable to explain how its treatment of language differs from that of Grammar and from that of Rhetoric.

Grammar is the study of the words of some language, their classification and derivation, and of the rules of combining them, according to the usage at any time recognised and followed by those who are considered correct writers or speakers. Composition may be faultless in its grammar, though dull and absurd.

Rhetoric is the study of language with a view to obtaining some special effect in the communication of ideas or feelings, such as picturesqueness in description, vivacity in narration, lucidity in exposition, vehemence in persuasion, or literary charm. Some of these ends are often gained in spite of faulty syntax or faulty logic; but since the few whom bad grammar saddens or incoherent arguments divert are not carried away, as they else might be, by an unsophisticated orator, Grammar and Logic are necessary to the perfection of Rhetoric. Not that Rhetoric is in bondage to those other sciences; for foreign idioms and such figures as the ellipsis, the anacoluthon, the oxymoron, the hyperbole, and violent inversions have their place in the magnificent style; but authors unacquainted with Grammar and Logic are not likely to place such figures well and wisely. Indeed, common idioms, though both grammatically and rhetorically justifiable, both correct and effective, often seem illogical. 'To fall asleep,' for example, is a perfect English phrase; yet if we examine severally the words it consists of, it may seem strange that their combination should mean anything at all.

But Logic only studies language so far as necessary in order to state, understand, and check the evidence and reasonings that are usually embodied in language. And as long as meanings are clear, good Logic is compatible with false concords and inelegance of style.

Sec. 3. Terms are either Simple or Composite: that is to say, they may consist either of a single word, as 'Chaucer,' 'civilisation'; or of more than one, as 'the father of English poetry,' or 'modern civilised nations.' Logicians classify words according to their uses in forming propositions; or, rather, they classify the uses of words as terms, not the words themselves; for the same word may fall into different classes of terms according to the way in which it is used. (Cf. Mr. Alfred Sidgwick's Distinction and the Criticism of Beliefs, chap. xiv.)

Thus words are classified as Categorematic or Syncategorematic. A word is Categorematic if used singly as a term without the support of other words: it is Syncategorematic when joined with other words in order to constitute the subject or predicate of a proposition. If we say Venus is a planet whose orbit is inside the Earth's, the subject, 'Venus,' is a word used categorematically as a simple term; the predicate is a composite term whose constituent words (whether substantive, relative, verb, or preposition) are used syncategorematically.

Prepositions, conjunctions, articles, adverbs, relative pronouns, in their ordinary use, can only enter into terms along with other words having a substantive, adjectival or participial force; but when they are themselves the things spoken of and are used substantively (suppositio materialis), they are categorematic. In the proposition, 'Of' was used more indefinitely three hundred years ago than it is now, 'of' is categorematic. On the other hand, all substantives may be used categorematically; and the same self-sufficiency is usually recognised in adjectives and participles. Some, however, hold that the categorematic use of adjectives and participles is due to an ellipsis which the logician should fill up; that instead of Gold is heavy, he should say Gold is a heavy metal; instead of The sun is shining, The sun is a body shining. But in these cases the words 'metal' and 'body' are unmistakable tautology, since 'metal' is implied in gold and 'body' in sun. But, as we have seen, any of these kinds of word, substantive, adjective, or participle, may occur syncategorematically in connection with others to form a composite term.

Sec. 4. Most terms (the exceptions and doubtful cases will be discussed hereafter) have two functions, a denotative and a connotative. A term's denotative function is, to be the name or sign of something or some multitude of things, which are said to be called or denoted by the term. Its connotative function is, to suggest certain qualities and characteristics of the things denoted, so that it cannot be used literally as the name of any other things; which qualities and characteristics are said to be implied or connoted by the term. Thus 'sheep' is the name of certain animals, and its connotation prevents its being used of any others. That which a term directly indicates, then, is its Denotation; that sense or customary use of it which limits the Denotation is its Connotation (ch. iv.). Hamilton and others use 'Extension' in the sense of Denotation, and 'Intension' or 'Comprehension' in the sense of Connotation. Now, terms may be classified, first according to what they stand for or denote; that is, according to their Denotation. In this respect, the use of a term is said to be either Concrete or Abstract.

A term is Concrete when it denotes a 'thing'; that is, any person, object, fact, event, feeling or imagination, considered as capable of having (or consisting of) qualities and a determinate existence. Thus 'cricket ball' denotes any object having a certain size, weight, shape, colour, etc. (which are its qualities), and being at any given time in some place and related to other objects—in the bowler's hands, on the grass, in a shop window. Any 'feeling of heat' has a certain intensity, is pleasurable or painful, occurs at a certain time, and affects some part or the whole of some animal. An imagination, indeed (say, of a fairy), cannot be said in the same sense to have locality; but it depends on the thinking of some man who has locality, and is definitely related to his other thoughts and feelings.

A term is Abstract, on the other hand, when it denotes a quality (or qualities), considered by itself and without determinate existence in time, place, or relation to other things. 'Size,' 'shape,' 'weight,' 'colour,' 'intensity,' 'pleasurableness,' are terms used to denote such qualities, and are then abstract in their denotation. 'Weight' is not something with a determinate existence at a given time; it exists not merely in some particular place, but wherever there is a heavy thing; and, as to relation, at the same moment it combines in iron with solidity and in mercury with liquidity. In fact, a quality is a point of agreement in a multitude of different things; all heavy things agree in weight, all round things in roundness, all red things in redness; and an abstract term denotes such a point (or points) of agreement among the things denoted by concrete terms. Abstract terms result from the analysis of concrete things into their qualities; and conversely a concrete term may be viewed as denoting the synthesis of qualities into an individual thing. When several things agree in more than one quality, there may be an abstract term denoting the union of qualities in which they agree, and omitting their peculiarities; as 'human nature' denotes the common qualities of men, 'civilisation' the common conditions of civilised peoples.

Every general name, if used as a concrete term, has, or may have, a corresponding abstract term. Sometimes the concrete term is modified to form the abstract, as 'greedy—greediness'; sometimes a word is adapted from another language, as 'man—humanity'; sometimes a composite term is used, as 'mercury—the nature of mercury,' etc. The same concrete may have several abstract correlatives, as 'man—manhood, humanity, human nature'; 'heavy—weight, gravity, ponderosity'; but in such cases the abstract terms are not used quite synonymously; that is, they imply different ways of considering the concrete.

Whether a word is used as a concrete or abstract term is in most instances plain from the word itself, the use of most words being pretty regular one way or the other; but sometimes we must judge by the context. 'Weight' may be used in the abstract for 'gravity,' or in the concrete for a measure; but in the latter sense it is syncategorematic (in the singular), needing at least the article 'a (or the) weight.' 'Government' may mean 'supreme political authority,' and is then abstract; or, the men who happen to be ministers, and is then concrete; but in this case, too, the article is usually prefixed. 'The life' of any man may mean his vitality (abstract), as in "Thus following life in creatures we dissect"; or, the series of events through which he passes (concrete), as in 'the life of Nelson as narrated by Southey.'

It has been made a question whether the denotation of an abstract term may itself be the subject of qualities. Apparently 'weight' may be greater or less, 'government' good or bad, 'vitality' intense or dull. But if every subject is modified by a quality, a quality is also modified by making it the subject of another; and, if so, it seems then to become a new quality. The compound terms 'great weight,' 'bad government,' 'dull vitality,' have not the same denotation as the simple terms 'weight, 'government,' 'vitality': they imply, and may be said to connote, more special concrete experience, such as the effort felt in lifting a trunk, disgust at the conduct of officials, sluggish movements of an animal when irritated. It is to such concrete experiences that we have always to refer in order fully to realise the meaning of abstract terms, and therefore, of course, to understand any qualification of them.

Sec. 5. Concrete terms may be subdivided according to the number of things they denote and the way in which they denote them. A term may denote one thing or many: if one, it is called Singular; if many, it may do so distributively, and then it is General; or, as taken all together, and then it is Collective: one, then; any one of many; many in one.

Among Singular Terms, each denoting a single thing, the most obvious are Proper Names, such as Gibraltar or George Washington, which are merely marks of individual things or persons, and may form no part of the common language of a country. They are thus distinguished from other Singular Terms, which consist of common words so combined as to restrict their denotation to some individual, such as, 'the strongest man on earth.'

Proper Terms are often said to be arbitrary signs, because their use does not depend upon any reason that may be given for them. Gibraltar had a meaning among the Moors when originally conferred; but no one now knows what it was, unless he happens to have learned it; yet the name serves its purpose as well as if it were "Rooke's Nest." Every Newton or Newport year by year grows old, but to alter the name would cause only confusion. If such names were given by mere caprice it would make no difference; and they could not be more cumbrous, ugly, or absurd than many of those that are given 'for reasons.'

The remaining kinds of Singular Terms are drawn from the common resources of the language. Thus the pronouns 'he,' 'she,' 'it,' are singular terms, whose present denotation is determined by the occasion and context of discourse: so with demonstrative phrases—'the man,' 'that horse.' Descriptive names may be more complex, as 'the wisest man of Gotham,' which is limited to some individual by the superlative suffix; or 'the German Emperor,' which is limited by the definite article—the general term 'German Emperor' being thereby restricted either to the reigning monarch or to the one we happen to be discussing. Instead of the definite, the indefinite article may be used to make general terms singular, as 'a German Emperor was crowned at Versailles' (individua vaga).

Abstract Terms are ostensively singular: 'whiteness' (e.g.) is one quality. But their full meaning is general: 'whiteness' stands for all white things, so far as white. Abstract terms, in fact, are only formally singular.

General Terms are words, or combinations of words, used to denote any one of many things that resemble one another in certain respects. 'George III.' is a Singular Term denoting one man; but 'King' is a General Term denoting him and all other men of the same rank; whilst the compound 'crowned head' is still more general, denoting kings and also emperors. It is the nature of a general term, then, to be used in the same sense of whatever it denotes; and its most characteristic form is the Class-name, whether of objects, such as 'king,' 'sheep,' 'ghost'; or of events, such as 'accession,' 'purchase,' 'manifestation.' Things and events are known by their qualities and relations; and every such aspect, being a point of resemblance to some other things, becomes a ground of generalisation, and therefore a ground for the need and use of general terms. Hence general terms are far the most important sort of terms in Logic, since in them general propositions are expressed and, moreover (with rare exceptions), all predicates are general. For, besides these typical class-names, attributive words are general terms, such as 'royal,' 'ruling,' 'woolly,' 'bleating,' 'impalpable,' 'vanishing.'

Infinitives may also be used as general terms, as 'To err is human'; but for logical purposes they may have to be translated into equivalent substantive forms, as Foolish actions are characteristic of mankind. Abstract terms, too, are (as I observed) equivalent to general terms; 'folly' is abstract for 'foolish actions.' 'Honesty is the best policy' means people who are honest may hope to find their account in being so; that is, in the effects of their honest actions, provided they are wise in other ways, and no misfortunes attend them. The abstract form is often much the more succinct and forcible, but for logical treatment it needs to be interpreted in the general form.

By antonomasia proper names may become general terms, as if we say 'A Johnson' would not have written such a book—i.e., any man of his genius for elaborate eloquence.

A Collective Term denotes a multitude of similar things considered as forming one whole, as 'regiment,' 'flock,' 'nation': not distributively, that is, not the similar things severally; to denote them we must say 'soldiers of the regiment,' 'sheep of the flock,' and so on. If in a multitude of things there is no resemblance, except the fact of being considered as parts of one whole, as 'the world,' or 'the town of Nottingham' (meaning its streets and houses, open spaces, people, and civic organisation), the term denoting them as a whole is Singular; but 'the world' or 'town of Nottingham,' meaning the inhabitants only, is Collective.

In their strictly collective use, all such expressions are equivalent to singular terms; but many of them may also be used as general terms, as when we speak of 'so many regiments of the line,' or discuss the 'plurality of worlds'; and in this general use they denote any of a multitude of things of the same kind—regiments, or habitable worlds.

Names of substances, such as 'gold,' 'air,' 'water,' may be employed as singular, collective, or general terms; though, perhaps, as singular terms only figuratively, as when we say Gold is king. If we say with Thales, 'Water is the source of all things,' 'water' seems to be used collectively. But substantive names are frequently used as general terms. For example, Gold is heavy means 'in comparison with other things,' such as water. And, plainly, it does not mean that the aggregate of gold is heavier than the aggregate of water, but only that its specific gravity is greater; that is, bulk for bulk, any piece of gold is heavier than water.

Finally, any class-name may be used collectively if we wish to assert something of the things denoted by it, not distributively but altogether, as that Sheep are more numerous than wolves.



CHAPTER IV

THE CONNOTATION OF TERMS

Sec. 1. Terms are next to be classified according to their Connotation—that is, according to what they imply as characteristic of the things denoted. We have seen that general names are used to denote many things in the same sense, because the things denoted resemble one another in certain ways: it is this resemblance in certain points that leads us to class the things together and call them by the same name; and therefore the points of resemblance constitute the sense or meaning of the name, or its Connotation, and limit its applicability to such things as have these characteristic qualities. 'Sheep' for example, is used in the same sense, to denote any of a multitude of animals that resemble one another: their size, shape, woolly coats, cloven hoofs, innocent ways and edibility are well known. When we apply to anything the term 'sheep,' we imply that it has these qualities: 'sheep,' denoting the animal, connotes its possessing these characteristics; and, of course, it cannot, without a figure of speech or a blunder, be used to denote anything that does not possess all these qualities. It is by a figure of speech that the term 'sheep' is applied to some men; and to apply it to goats would be a blunder.

1  2  3  4  5  6  7  8  9     Next Part
Home - Random Browse