Piano Tuning - A Simple and Accurate Method for Amateurs
by J. Cree Fischer
1  2  3     Next Part
Home - Random Browse





Copyright (c) 1907 by Theo. Presser.

All rights reserved under Pan American and International Copyright Conventions.

Published in Canada by General Publishing Company, Ltd., 30 Lesmill Road, Don Mills, Toronto, Ontario.

Published in the United Kingdom by Constable and Company, Ltd., 10 Orange Street, London WC 2.

This Dover edition, first published in 1975, is a republication of the work originally published in Philadelphia in 1907. The following sections have been omitted from the present edition because they were out-of-date: Practical Application of Piano Tuning as a Profession, Business Hints, Ideas in Advertising, and Charges for Services. This edition is reprinted by special arrangement with Theodore Presser Company, Presser Place, Bryn Mawr, Pennsylvania, publisher of the original edition.

International Standard Book Number: 0-486-23267-0

Library of Congress Catalog Card Number: 75-14759

Manufactured in the United States of America

Dover Publications, Inc.

180 Varick Street

New York, N.Y. 10014


For some years past a lack of competent men in the profession of Piano Tuning has been generally acknowledged. This may be accounted for as follows: The immense popularity of the piano and the assiduous efforts of factories and salesmen have led to the result that nearly every well-to-do household is furnished with an instrument. To supply this demand the annual production and sale for the year 1906 is estimated at three hundred thousand pianos in the United States. These pianos must be tuned many times in the factory before they are shipped to the salesroom; there they must be kept in tune until sold. When, finally, they take up their permanent abode in the homes of the purchasers, they should be given the attention of the tuner at least twice a year. This means work for the tuner. But this is not all. Presuming that the average life of the piano is about fifty years, it is evident that there exists in this country an accumulation of instruments variously estimated at from four to five millions. This means more work for tuners.

While production and accumulation have been increasing, there has been little, if any, effort made to provide tuners to look after the needs of this ever-increasing number of instruments, no provision for the thorough instruction of the learner of Piano Tuning, outside the walls of the factories, and of the few musical colleges where the art is taught. Doubtless there are many persons who are by nature well adapted to this agreeable and profitable occupation—persons who would make earnest effort to acquire the necessary skill and its honest application if they had a favorable opportunity. Musical colleges in which tuning is taught are few and far between; piano factories are built for the purpose of producing pianos and not tuners, for mechanics and laborers and not for teachers and pupils; furthermore, very little fine tuning is done in the factory; rough tuning is the bulk of the work there, and a long apprenticeship in the factory, with its meager advantages, is rarely sufficient to meet the demands of the would-be-thorough tuner. This may account, in part, for the fact that many who are incompetent are following this profession, and that there is an increasing demand for tuners of skill.

In view of these facts the author came to the opinion that if a course of instruction were prepared which would demonstrate clearly the many abstruse details of the art in an interesting and comprehensible way, it would be appreciated by those who are desirous to learn. Acting upon this impulse, he began the preparation of such a course.

The present book is the outgrowth of a course of instruction, used successfully with pupils from various parts of the United States and Canada, conducted partly by correspondence; partly at the school directed by the author. Although it has been necessary to revise the course somewhat for publication in the present form, no essential matter has been omitted and much has been added.

In preparing this course of study the utmost effort has been made to present the various topics in the clearest, most comprehensive manner, literary excellence being a secondary consideration.

While the book is designed for self-instruction, the systematic arrangement of the text, and the review questions with each lesson, suggest its use as a text-book for schools and colleges which give personal training in the care of the piano.

To the talented individual of either sex who is ambitious to acquire a dignified and profitable profession, to the scientifically-inclined musician who is eager to learn the fundamental principles underlying all musical harmony, and finally to the non-professional who loves to read because of a fondness for science, the book is submitted; if it should prove a boon to the former, a benefit to the second, or a pleasure to the latter, I shall feel rewarded for the work of its preparation.




LESSON I. 7 Introduction.

LESSON II. 11 General construction of the piano and something of its evolution and history,

LESSON III. 20 Technical Names and Uses of the Parts of the Upright Action,

LESSON IV. 32 Action of the Square Piano. Action of the Grand Piano. Instructions for Removing the Square and Grand Piano Actions,

LESSON V. 43 Regulating and Repairing. Faults in Pianos aside from the Action and their Remedies. Regulating and Repairing the Upright Action,

LESSON VI. 56 Regulating and Repairing the Square Action. Miscellaneous Repairs,

LESSON VII. 66 The Study and Practice of Piano Tuning,

LESSON VIII. 72 The Temperament. Beats, Waves, Pulsations. The New System of Temperament. The Octave. The Fifth. Pitch. Diagram of the Fischer System of Temperament,

LESSON IX. 85 Specific Instructions in Setting Temperament. The Continuous Mute,

LESSON X. 97 Theory of the Temperament. Equal Temperament. Unequal Temperament,

LESSON XI. 109 Technique or Modus Operandi in Piano Tuning. Manipulation of the Tuning Hammer. Setting the Mutes or Wedges in the Upright Piano. Setting the Mutes or Wedges in the Square Piano,

LESSON XII. 126 Mathematics of the Tempered Scale. Rationale of the Temperament. Proposition I,

LESSON XIII. 139 Rationale of the Temperament, Concluded. Proposition II. Proposition III. Numerical Comparison of the Diatonic with the Tempered Scale. Various Mathematical Tables and Examples,

LESSON XIV. 150 Miscellaneous Topics Pertaining to the Practical Work of Tuning. Cause of the Beats. Finishing up the Temperament. Tuning the Treble. Tuning the Bass. False Waves,

LESSON XV. 163 Miscellaneous Items Pertaining to the Practical Work of Tuning, Regulating, and Repairing. Comparison of the Different Systems of Temperament. System A. System B. System C. Final Inspection. Loose Pins. Split Bridges. Stringing. Wire Splicing,

LESSON XVI. 178 Tuning and Repairing the Reed Organ. Cleaning. Stops. Examination. Sticking Keys. Leaks. Pedal Defects. Sympathetic Vibrations. Tuning,

LESSON XVII. 193 Concluding Professional Hints. Peculiar Expressions Used in Designating Qualities of Tone. Questions often Asked the Piano Tuner. Seasons for Tuning,

INDEX, 199



Undoubtedly every human being is fitted for some sphere of usefulness—some industry by which he can benefit mankind and support himself in comfort. Just what we are fitted for must, almost invariably, be decided by ourselves; and the sooner the better, else we may plod among the thousands whose lives are miserable failures for the reason that "they have missed their calling."

In the consideration of Piano Tuning as a profession, one should first determine if he possesses the necessary qualifications, the most important of which are a musical ear and some degree of mechanical ability. Having these, all else may be acquired by study. It is not necessary to possess a musical education or to be a musician; although a knowledge of music will be found a great aid. Still, an elementary knowledge of the principles of music is a necessity to the student of this course, as it has been found impossible to avoid the use of a few technical terms. In most cases, however, they are set forth in such a way that they will be readily apprehended by anyone who has even a slight knowledge of the fundamental principles of music.

In teaching Piano Tuning, it is the custom of the "Central School of Piano Tuning," for which these lessons were originally prepared, to have all students prepare two lessons in harmony as a test of their acquaintance with the intervals and chords used in tuning. The lessons are not difficult, and they embody only those principles which are essential to the proper understanding of the key-board: the intervals of the diatonic scale and the major common chord in the twelve different keys, C, D, E, F, G, A, B, B-flat, D-flat, E-flat, G-flat, and A-flat. In connection with the harmony lessons, we use as a text-book "Clarke's Harmony,"[A] and the student is required to master the first two chapters and prepare manuscripts upon each of the lessons. Below is a number of the most important questions selected from those lessons upon which manuscripts have been written:

1. Every white key on the piano represents an "absolute pitch." By what names are these pitches known? How are the black keys named?

2. How many tones constitute the diatonic scale? Give numerical names.

3. Intervals are measured by steps and half-steps. How many steps from 1 to 3 in the diatonic scale? 1 to 4? 1 to 5? 3 to 5? 5 to 8? 1 to 8?

4. Why is there no black key between E and F, and between B and C?

5. From 1 to 3 is called an interval of a third; from 3 to 5, also a third; from 1 to 5, a fifth: they are so called because they include, respectively, three and five members of the diatonic scale. What is the interval 3 to 6? 2 to 5? 5 to 8? 2 to 6? 1 to 8?

6. Thirds are of two kinds: major (larger) thirds embrace two whole-steps; minor (smaller) thirds embrace a step and a half. What kind of a third is 1-3 in the diatonic scale? 2-4? 3-5? 6-8?

7. What do we mean by the term, Fundamental of a chord? What is added to it to complete the common chord?

8. What absolute pitches comprise the common chord of C? What kind of interval between the first two members? What between the first and last? What between the second and last?

9. What tones would you use if told to strike the common chord of C in four-part, close harmony, using the fundamental for the highest tone?

10. How many keys (white and black) are there between the fundamental and the third? How many between the third and the fifth? How many between the fundamental and the fifth when the fifth is played above the fundamental?

11. How many keys (white and black) are there between two keys comprising a perfect fourth?

12. (Most important of all.) What keys of the piano keyboard comprise the common chord founded upon G as the fundamental? Upon F? Upon F[]? Upon G[]? Upon B[b]? Upon D[b]? Upon E[b]? Upon D? Upon E? Upon A? Upon B?

If one is able to answer these questions correctly he is qualified to begin the study of Piano Tuning.

[A] Published by Theodore Presser, Philadelphia, Pa.



The piano of today is, unquestionably, the most perfect, and consequently the most popular and beloved of all musical instruments.

That enchanting Queen of the home, Whose place in the hearts of the family Is as dear as though it could speak In words of joy and sorrow, Sadness or consolation; Soothing, animating, enrapturing, Charming away the soul From its worldly weight of cares, And wafting it softly Into the realm of celestial dreams.

The untiring efforts of genius for over a century have succeeded in producing a musical instrument that falls little short of perfection. Yet other inventions and improvements are sure to come, for we are never content with "good enough."

The student of these lessons may, in his practice, discover defective mechanical action and by his ingenuity be able to improve it; he may likewise see where an improvement can be made in acoustic construction; where a better scale can be drawn; or where different and perhaps new materials may be used for the component parts of the instrument. The possibilities are numerous along these lines, and in addition to bestowing a favor upon the general public, the man who has the originality to produce something new, places himself beyond want.

The inevitable inference is that the piano is an evolution of the harp principle. This instrument was known centuries previous to the Christian era. From the best history obtainable, we learn that about three hundred years ago, the first effort was made to interpose a mechanical contrivance between the performer and the strings whereby it would only be necessary to strike the keys to produce tone from the strings, thereby decreasing the difficulty in finding the strings and picking them with the fingers, and greatly increasing the possibilities in musical rendition.

History gives credit to Italy for the first productions of this kind, about 1600 A.D., when the faculty of music was beginning to manifest itself more boldly. Scientists saw that wonderful developments were possible, and we have reason to believe that experiments were made in England, France, Germany and all civilized countries about this time, for the production of the instrument which we call, in this day, a Pianoforte. (Piano e forte: soft and loud.)

At this time communication between the different countries was, of course, slow and uncertain, and experiments of this kind were probably unknown outside of the immediate neighborhood in which they were tried; therefore, much valuable and interesting history has not come to light. However, from the specimens which we have had the pleasure of seeing, and some of which we have had the opportunity to work on, we infer that about the same line of difficulties presented themselves to all of these early experimenters, most of which were not efficiently overcome until in the last century, and the most important of which it fell to the lot of American inventors to overcome.

Some of these early instruments were not even provided with dampers for stopping the tone when the key was released; consequently, when a number of keys were struck in succession, the tone continued from all, so long as the strings would vibrate. The strings and sound-board being very light, the sustaining qualities were meager compared to those of the modern piano; consequently the dampers were not so much missed as they would be if removed from a modern upright or grand, which would surely render them unfit for use.

In the first attempts at piano building, the difficulties to be overcome may be enumerated as follows: The frames were not strong enough to resist the tension of the strings; they were made almost entirely of wood which yields to the pull of the strings and is subject to climatic changes; the scale was very imperfect, that is, the length, tension and weight of the strings were not properly proportioned, the result being a different quality of tone from different portions of the keyboard; the actions were either heavy and imperfect, or too light to produce sufficient vibration; the proper point upon the strings for the hammers to strike and for the dampers to bear had not yet been ascertained; the preparation and seasoning of the wood for the different parts of the instrument had not received sufficient attention.

One cannot conceive how difficult it is to produce something that has never existed, until he tries. The requirements necessary to such results as are obtainable from the modern piano are numerous and rigid and the result of many costly experiments.

Probably the most important essential in piano building is the production of a frame of such strength and stability that the enormous tension of the strings is completely resisted in all parts of the scale. In many of the cheaper pianos of this day, the lack of this essential manifests itself in an annoying degree to the piano tuner. In tuning, the workman "brings up" his temperament in the middle of the instrument; in most cases the temperament stands all right. He next tunes the treble, then the bass; after doing his work perfectly he will often find that the treble fell somewhat while he was bringing up the bass; or, in a few cases, he may find that the treble sharpened, thus showing that there was yielding of the frame. Of course, this defect might be overcome by using an extremely heavy metal plate and wooden frame; but the commercial side of the question, in this day, calls for lightness in the instrument as a check to the expense of production, and, consequently, pianos that are "made to sell" are often much too light to fulfil this requirement.

In the upright piano, the back frame of wood is first made; at the top of this is the pin-block, sometimes called the wrest-plank. This is composed of several layers of wood firmly glued together with the grain running in different directions to prevent splitting and warping. Into this plank the tuning pins are driven. The sound-board is fitted firmly into this frame of wood below the pin-block.

Next, the strong metal plate is secured to the frame by large bolts and screws. Openings are left in the plate for the bridges, which project from the sound-board beyond the metal plate; also for the tuning pins, action bracket bolts, etc.

At the lower end of the plate, and just below the bridges,[B] the hitchpins are driven firmly into holes drilled to receive them. Their purpose is to support the lower ends of the strings. The bass strings are separate, and each has a loop with which to fasten it to the hitchpin. In the treble, one piece of wire forms two strings; the two ends are secured to the tuning pins above, and the string is simply brought around the hitchpin. The bridges communicating with the sound-board are at the lower end of the sound-board. Notice, there is a portion of the length of each string between the bridge and the hitchpin.

[B] There are two sections of the lower bridge, one for the treble and one for the overstrung bass.

At the upper end of the strings, a "bearing-bar," situated between the tuning pins and upper bridge, is attached to the pin-block by screws which draw it inward; its function is to hold the strings firmly in position. You will notice that the lengths of the strings, above the bearing-bar, vary considerably, even in the three strings comprising the unison. (We will speak of the effect of this in tuning, farther on.)

After that portion of the case is completed which forms the key-bed or action frame, we are ready to set in the


By this is meant the keys and all those intricate parts which convey the motion of the key to the hammers which strike the strings, and the dampers which mute them.

The requisites of the action are as follows:

The keys must descend quickly and easily at the touch of the performer, giving quick response.

The weight of the hammer must be properly proportioned to the strings it causes to vibrate.

The hammer must rebound after striking the string. (Where the hammer remains against the string, thereby preventing vibration, the term "blocking" is used to designate the fault.)

The action must be capable of quick repetition; that is, when a key is struck a number of times in quick succession, it must respond perfectly every time.

After striking and rebounding from the string, the hammer should not fall to its lowest position where it rests when not in use, as this would prevent quick repetition. For catching the hammer at a short distance from the string, a felted piece of wood suspended on a wire, called the back check, rises when the key is depressed, and returns when the key is released, allowing the hammer to regain its resting position.

A damper, for stopping the tone of the string when a key is released, must leave the string just before the hammer strikes, and return the instant the key is released.

A means must be provided for releasing all the dampers from the strings at the will of the performer. The loud pedal, as it is called, but more properly, the damper pedal, accomplishes this end by raising the dampers from the strings.

In the square and the grand piano, the action is under the sound-board, while the strings are over it; so the hammers are made to strike through an opening in the sound-board. In the upright, the strings are between the action and the sound-board; so no opening is necessary in the latter.

The "trap-action" consists of the pedals and the parts which convey motion to the action proper.


1. What have been some of the salient obstacles necessary to overcome in producing the perfected piano?

2. Of what use are the dampers? Explain their mechanical action.

3. Mention several of the qualities necessary to a good action.

4. Describe the building of an upright piano.

5. Contrast the musical capacity and peculiar characteristics of the piano with those of the organ, which has the same keyboard.



In the practice of piano tuning, the first thing is to ascertain if the action is in first-class condition. The tuner must be able to detect, locate and correct the slightest defect in any portion of the instrument. Any regulating or repairing of the action should be attended to before tuning the instrument; the latter should be the final operation. As a thorough knowledge of regulating and repairing is practically indispensable to the professional tuner, the author has spared neither means, labor nor research to make this part of the lessons very complete, and feels sure that it will meet with the hearty approval of most, if not all, students. The piano tuner who knows nothing of regulating and repairing will miss many an opportunity to earn extra money.

The illustration accompanying this lesson is from a Wessell, Nickel and Gross Upright action. This firm, whose product is considered the acme of perfection, makes nothing but actions. Most manufacturers of pianos, of the present day, build the wooden frame, the sound-board and the case only; the action, metal plate, strings, tuning-pins, etc., being purchased from different firms who make a specialty of the manufacture of these parts. A few concerns, however, make every piece that enters into the composition of the instruments bearing their names.

Ky, is the Key in its resting position.

c, wherever found, represents a cushion of felt or soft leather upon which the different parts of the action rest or come in contact with each other. Their purpose, as is readily seen, is that of rendering the action noiseless and easy of operation.

Bnc R, shows the end of the balance rail, extending the entire length of the keyboard.

B P, is the balance pin. This is a perfectly round pin driven firmly in the balance rail. The bottom of the hole in the key fits closely around the balance pin; at the top, it is the shape of a mortise, parallel with the key, which allows the key to move only in the direction intended. The mortise in the wooden cap on top of the key at this point is lined with bushing cloth which holds the key in position laterally, and prevents looseness and rattling, yet allows the key to move easily.

L, is the lead put in this portion of the key to balance it, and to insure uniformity of "touch," and quick and certain return of key to its rest position. As there is more or less difference in the length of keys, and also in the weight of the hammers operated by them, some keys are leaded much more heavily than others. In some cases the lead is inserted in the extreme back end of the key; in others it is put near the balance rail according to the requirement. In some actions the lead is omitted entirely; but in the best actions it is almost invariably present. In the action of the grand piano the keys are leaded in front of the balance rail instead of back of it. This is due to the fact that in the grand piano the hammer rests in a horizontal position and its whole weight must be actually lifted and the force of gravity overcome, while in the upright, the hammer rests in a vertical position, only requiring to be thrown forward.

G P, is the guide pin, generally of oval shape, with the longest diameter in line with the key. The hole in the lower portion of the key, in which the guide pin works, is bushed with bushing cloth and is made to fit so closely that the key will not move laterally, yet not so tightly that the key will not work easily.

Bm, is a wooden block called the bottom; sometimes called the key-rocker. It is held in position by the two screws shown in cut by which it can be adjusted or regulated.

E, is the extension communicating the motion of the key to the upper part of the action. There are various ways in which the extension is connected to the bottom. In this action, the extension is made round at the lower end and fits snugly into a hole in the bottom upon a felt disc. When the action is taken out, the extensions simply lift out of the holes, and when it is put back it is necessary to enter each one in its place. In other actions, the upper side of the bottom where the extension rests has no hole but simply a felt covering upon which the extension rests; in this case it is necessary to provide what is called an extension guide which is hinged to the extension guide rail shown in the cut at the left of the extension. In actions of this kind, the extensions remain in place at all times and the trouble of placing them properly on the bottom when replacing the action is obviated. Other methods also are employed which are readily understood upon slight examination, but are essentially similar to the above. Instead of the bottom, a capstan screw is used in some actions as follows:

Cpn, is a capstan screw used in some actions in place of the bottom. It is turned by inserting a pointed instrument in one of the four holes, thus raising or lowering the capstan in regulating. The lower end of the extension is felted. In such actions the extension is invariably provided with the extension guide.

B, is the metal action bracket. The bracket is one solid piece of metal. There are generally four brackets in the upright action. The brackets rest on supports in and at the sides of the keybed, and are secured at the top by large bolts,

BB, which go through the metal plate and into the wooden frame or pin block. At the top of each bracket is an opening to receive this bolt and a thumbscrew (not shown in the cut, being behind the hammer) which fastens the action securely in position.

M R, is the main rail; so called because the main constituents of the action are attached to it. (Everything designated as "rail" in the action runs the entire length of the action in one solid piece.)

W, is the wippen. Those pieces upon which or by which the small letter g is shown are the flanges. The one at the left of the wippen is called the wippen flange. It is made fast to the main rail by a screw, and upon it the wippen is hinged by means of a "center-pin" at the lower end. The center-pin in the wippen is driven through a hole in which it fits tightly and immovably in the middle part, and it (the center-pin) is consequently stationary in the wippen. The flange extends down at the sides of the wippen and the holes in flange are made large enough to receive bushing cloth in which the center-pin works freely but not loosely. All flange joints are of this nature; some, however, are provided with a means for tightening the center-pin in the middle portion of the joint.

j, is the jack. The purpose of the jack is to communicate the motion of the wippen to the hammer. The precise adjustment of the jack and the adjacent parts upon which it depends for its exact movements, play an important part in regulating the "touch" of the piano, and will be fully entered into in following lessons.

js, jack spring. Its purpose is to hold the jack inward against the "nose" or "heel" of the hammer butt. (See Bt, hammer butt.)

Rr, regulating rail. The regulating button is shown attached to the rail by the regulating screw which is turned by means of its ring on top of Rr. The purpose of the regulating button is to throw the point of the jack out of the nose of the hammer butt, and allow the hammer to rebound from the string. If the button is too high, it does not throw or trip the jack in time to prevent blocking. When the button is too low, it disengages too soon, and much of the force of the key is lost before it reaches the hammer.

BR, is the block rail, felted on the side next to the jack which strikes against it when thrown from nose. This rail is absent in some actions, in which case the back of the jack is felted and strikes against the "back catch," which is also felted on inner side. (The back catch has no mark in the cut, but is explained below in connection with the "back check.")

BC, is the back check which is simply a piece of wood with a thick piece of felt glued to the inner face and suspended on a wire.

BCW, back check wire supporting the back check, and screwed to the wippen. The purpose of the back check is to check the hammer by coming in contact with the "back catch" (the backward projection of the butt), at a short distance from the string in its return, and prevent the hammer from falling entirely back to its rest position, thereby preventing quick repetition.

Bl, bridle. This is a piece of tape about an eighth of an inch wide with a piece of leather glued to the end and a hole near the end for the point of the "stirrup" or bridle wire. The cut shows where the bridle is fastened in the hammer butt by being put into the hole in the butt, and the back catch stem covered with glue and driven in by it which precludes all possibility of its coming loose. The bridle passes through a hole in the lower part of the back catch. Its purpose is to assist the hammer to return quickly by hanging to it with the weight of the wippen, extension, jack, etc., when the key is released. Thus the bridle becomes the main factor in the matter of quick repetition.

Bl W, bridle wire, screwed into wippen, bent in the shape of a buckle at top to hold bridle.

Bt, butt; or, more specifically, hammer butt. In some cheap actions the butt is joined to its flange g, by the means described under the head of wippen flange; but in this action the center-pin is held firmly in the butt by a small strip of brass containing a set screw; somewhat obscure in the cut, but discernible. As explained elsewhere, all center-pins turn in the flange and not in the middle part.

HS, hammer shank in rest position.

H, hammer showing wood body or head, and covering of two layers of felt.

H R, hammer rail, resting on felt cushion, c, glued to rail or bracket. The hammer rail is held in position by the rod, shown under the hammer shank, which is hinged to the bracket at the lower end, and which allows it to be moved forward when the soft pedal is used. The soft pedal communicates with this rail by a rod which moves it forward and thereby shortens the stroke of the hammers and produces a softer tone.

sr, spring rail screwed to the brackets. This rail supports the light wire springs which assist the hammers in returning to rest position.

S, string.

D, is the damper head secured to the damper wire by a set screw.

DL, damper lever, working in damper flange g, which is screwed to main rail.

s, spoon; so called from its shape. It is screwed into the wippen. When the key is struck, the motion on the wippen throws the spoon forward, pushing the lower end of damper lever forward, and releasing the damper from its contact with the string. The damper is held against the string by the wire spring which is seen running from the damper flange to the top of the damper lever.

DR, damper rod. This is a rod running from the left or bass end of the action to the right as far as the dampers are continued in the treble. It is acted upon by the "loud" or damper pedal, which raises the outer projection, and by being hinged to the main rail about the same height as this projection, the entire rod is thrown outward against the lower ends of the damper levers, releasing all the dampers simultaneously. This being the only office of the right pedal, it is readily seen that this pedal does not increase the loudness, but simply sustains any number of tones struck successively, giving the effect of more volume.

The student should familiarize himself with all technical terms used in this lesson, as they will be referred to frequently in the succeeding lessons on repairing and regulating.


Without reference to anything but the cut, give technical names for parts of action represented by the following letters or abbreviations:

1. Bnc R, c, G P, BP, Ky, L.

2. Bm, Cpn, E, W, j, js, g, and M R.

3. Rr, B C, B R, B C W, Bl, and Bl W.

4. Bt, H, H S, H R, and sr.

5. S, D, D L, D R, s, B, and B B.

6. Explain the purpose and movements of the jack.

7. Describe a flange and the joint of same.

8. Give names of the four flanges shown in cut.

9. What is the purpose of the back catch and back check?

10. Explain the mechanical action of the damper pedal, and its effect when used; also, that of the soft pedal.




Up to about the year 1870, the square was the popular piano. The grand has always been too expensive for the great music-loving masses, and previous to this time the upright had not been developed sufficiently to assert itself as a satisfactory instrument. The numerous objections to the square piano forced its manufacture to be discontinued a few years after the introduction of the improved new upright. Square pianos that come, at the present day, under the hand of the tuner, are usually at least fifteen years old, and more frequently twenty or more. However, in some localities the tuner will meet numbers of these pianos and he will find them a great source of revenue, as they are almost invariably in need of repair.

Compare the three cuts of actions in the study of this lesson.

The main constituent parts of the square action are similar in appearance to those of the upright; in fact, most of the parts are the same in name and office. However, the parts are necessarily assembled very differently. In the square action, the hammers strike in a vertical direction, while in the upright they strike in a horizontal direction; the motion of the key being the same in both.

Of the three types, the square is the simplest action, as many of the parts seen in the upright and grand are entirely absent in the square.

Beginning with the key, it has its balance pin, guide pin, cushions, etc., practically the same as in the other types.

The bottom, or key rocker, is reversed in the square; the end transmitting the motion being nearest the performer.

The extension and wippen are absent in the square, as the jack is attached directly to the bottom or key-rocker.

The back check is screwed to the key, and as the hammer head rests against it after striking, the use of the contrivance called the back catch in the upright is unnecessary.


A. Action Frame.

B's Indicate the Cushions, or Bushing, of felt, cloth or leather.

C. Balance Rail.

D. Balance Pin. Round.

E. Mortised Cap for Balance Pin. Bushed.

F. Key.

G. Lead.

H. Back Check.

I. Bottom or Key Rocker.

J. Bottom Screws; used to regulate height of Jack.

K. Jack.

L. Jack Spring; concealed under Bottom.

M. Center Pin to Jack.

N. Hammer Rail.

O. Regulating Screw.

P. Regulating Button.

Q. Flange Rail.

R. Flange. Split.

S. Flange Rail Screw.

T. Flange Screw, to regulate jaws of flange.

U. Hammer Butt.

V. Center Pin.

W. Hammer Stem or Shank.

X. Hammer Head.

Y. Hammer Felt. Treble hammers sometimes capped with buckskin in old instruments.


1. Damper Lifter Wire.

2. Damper Lifter Buttons.

3. Damper Felt.

4. Damper Head.

5. Damper Lever.

6. Damper Leads.

7. Shade, supported by wire stanchions, on top of which are screwed shade buttons.

8. Damper Rail. Tilted by Loud Pedal Rod which raises all the dampers simultaneously.

9. Damper Flange.

10. Flange Screw.

11. Damper Lever Center Pin.


consists of Pedals, Pedal Braces, Pedal Feet, Pedal Rods, Roller Boards or Elbows, Studs, Plugs, Trap Springs, Wires and Lifter Rods.

The cut is from the French action. Nearly all square pianos in use at the present time are of this type.

The hammer rail in the square, in addition to serving its purpose as a rest for the hammers, also serves the purpose of the regulating rail, as you will see the regulating screw, with its button, attached to it. This rail is stationary in the square, not moving toward the strings and shortening the stroke as it does in the upright when the soft pedal is used. The soft pedal in the square piano simply interposes a piece of felt between each hammer and its corresponding string or strings. This felt being much softer than that of the hammers, the tone is greatly subdued.

The mechanical arrangement of the dampers is very different in the square from that in the upright. The dampers are above the strings. Instead of springs to hold them against the strings, they simply rest upon them with their weight. In many old squares some of the dampers fall upon nodal points, causing defective damping or harmonic after-tones.

The stationary parts of the square action are: action frame, to which is secured the balance rail, balance pins and guide pins, hammer rail, flange rail, and damper rail. When the key is struck, the parts that move upward are: the back end of the key, bottom, jack, hammer, back check, damper wire and damper lever. The hammer falls back upon the back check immediately after striking, and remains there until the key is released, when all movable parts fall to rest position.

The action of the jack is the same in all types.


After thoroughly going over the details of the action of the square and upright pianos, there remains very little to describe in the action of the grand.

The grand action partakes of the characteristics of both the upright and the square, and is somewhat more complicated than either.

The bottom and extension are almost identical with those of the upright; the extension, however, is necessarily very short.

The wippen is of different construction, and somewhat more complicated in the grand.

The flange rail in the grand is made also to serve the purpose of regulating rail, as the hammer rail is made to do in the square.

The back check is identical with that of the square.

The dampers are the same in their working principles as those of the square, but are generally different in construction; yet, some squares have the same arrangement of dampers as those shown in the cut of the grand action.

The soft pedal of the grand shifts the entire action to the right so that the hammers strike only two and in some cases only one of the strings.

The student should study the three types of actions from the actions themselves, if possible.


1. Indicates the felt, cloth or leather, upon which the various parts of the action rest, or fall noiselessly.

2. Key.

3. Bottom; sometimes called Key Rocker.

4. Extension; split at lower end to receive center pin in Bottom.

5. Wippen Support.

6. Jack.

7. Jack Spring.

8. Flange and Regulating Rail.

9. Regulating Screw, Button and Cushion.

10. Escapement Lever.

11. Regulating Screw in Hammer Flange, for Escapement Lever.

12. Check Wire, for Escapement Lever.

13. Screw to regulate fall of Escapement Lever.

14. Lever Flange, screwed to Flange Rail.

15. Hammer Shank.

16. Hammer.

17. Back Check.

18. Damper Lever, leaded.

19. Damper Wire, screwed into upright.

20. Damper Wire Guide, fastened to Sound-Board.

21. Damper Head and Felt.

0. Center Pins. Holes lined with Bushing Cloth.


First, feel or look underneath the keyboard and see if there are screws that go up into the action. In most of the better grade instruments the action is fastened in this way. If the screws have square heads, your tuning hammer will fit them and bring them out; if common screws, a screw-driver will suffice. Look through the opening in the sound board where the hammers strike and see that they are all down before pulling out the action, lest they break off by catching on the under side of the sound board. This is almost sure to happen if actions are out of order.

In most square pianos, the narrow board just below the keys can be removed by being raised straight up, as it simply sets over screw heads in the key frame. When this strip is removed, a wire handle will be found in the middle of the key frame by which to draw out the action. In some cases, and especially in grands, this strip is secured by screws found underneath the piano. In other pianos, the action is held by screws in front of the key frame, which will be revealed by the removal of the front strip, above referred to.

Be especially careful in placing the action back into the piano. As a rule, it is safe to keep the right (long) end of the square action bearing against the right side of entrance, being sure that one end of action does not get ahead, which might cause some of the hammers to strike the props for which the openings are left in the back extremities of action.

While the action is out, study carefully the purpose of every part and its movements, referring to this and the previous lesson until you have thoroughly mastered the entire mechanism. Do not rest until you can name correctly everything you see and know its use so well that you could explain it satisfactorily to an inquirer. Sometimes the tuner is asked a great many perplexing questions and is expected to respond intelligently.

We have dealt with the three types of actions that are most commonly found in the three types of pianos. The student must bear in mind that there are numerous manufacturers of actions, and that each has his peculiar method of constructing his special action to bring about the desired results, which are practically the same in all cases; and consequently, while a variety of construction will confront the beginner in piano regulating and repairing, he will understand the construction and requirements of any action that may demand his skill from the foregoing instruction, if properly mastered. In this, as in all other mechanical professions, one's inventive genius must often be summoned to assist in surmounting obstacles which are sure to arise unexpectedly.


1. From a philosophical point of view, which do you consider the easiest and most perfect of the three types of actions? Also give reasons.

2. Considering the wippen and its attachments as one part, how many parts move when a key is struck in the upright piano? How many in the square?

3. Name the parts found in the upright action that are absent in the square.

4. Describe the three methods by which soft tone is obtained from use of soft pedal in the three types of actions.

5. What rail serves two purposes in the square action, and what are they? What rail serves two purposes in the grand action, and what are they?




One of the most common, and, at the same time, most annoying conditions both to the owner of the piano and the tuner, is the "sympathetic rattle." This trouble is most usual in the square and the grand pianos and is generally due to some loose substance lying on the sound board. The rattle will be apparent only when certain keys are struck, other tones being perfectly free from it. These tones cause the sound board to vibrate in sympathy, so to speak, with the weight of the intruding substance at the point where it lies, and if it be moved the distance of six inches it will sometimes cease to respond to these particular tones, but may respond to others, or cease to cause any trouble.

The article may generally be found near the front of the sound board under the top piece of the case, this being the place where it would most likely fall. No special instrument is made for the purpose of searching for such objects, but one can be easily devised with which the tuner can feel all over the sound board, and remove such articles as well as dust and dirt. Secure a piece of rattan or good pliable hickory, and draw it down to the width of half an inch, thin enough to bend easily, and long enough to reach anywhere under the stringing or metal plate. By putting a cloth over this stick you can remove anything that comes in its way. Some difficulty will be found, however, in getting under the plate in some pianos. In case you cannot procure a suitable piece of wood, a piece of clock spring will be found to answer very well. We have taken from pianos such articles as pencils, pieces of candy, dolls, pointers used by music teachers, tacks, nails, pennies, buttons, pieces of broken lamp chimneys, etc., etc., any one of which is sufficient to render the piano unfit for use. The sound board of the upright being vertical prevents its being subject to the above difficulty.

A split in the sound board, in any style of piano, sometimes causes trouble due to the vibrating edges of the board coming in contact with each other. Insert the point of your screwdriver in the crack, holding it there firmly; if the rattling stops, the difficulty is discovered, and may be remedied by placing a screw or wedge in the crack, or a wedge of wood, cork or rubber between the sound board and iron plate or casing, if the location of the trouble permits. While this method seems a perfunctory one, it is nevertheless the best the tuner is prepared to do, for it is next to impossible to glue a crack in the sound board successfully outside of a regular factory or repair shop, where the instrument may be taken all apart and a new sound board put in or the old one properly repaired.

Sometimes the sound board gets loose or unglued at the edges, or the bridges or ribs come loose. Any part of the piano where there is vibration or loose material may become the source of the sympathetic rattle, as even parts of the case vibrate with the tones struck; so you must examine the panels, lock, hinges, soft pedal bar (in square), in fact all parts of the case and woodwork for the location of the trouble. Once found, the remedy will suggest itself. The greatest difficulty is to locate the cause. Very frequently this will be found entirely outside of the piano; a loose window glass, picture glass, lamp or other article of furniture in the room may respond to a particular tone or its octave. We have never found the sympathetic rattle in the action; it has rattles, but not of this character. Any other defect which may be found under this head will only require the exercise of a little mechanical ingenuity to suggest a remedy.


(Use cut of upright action for reference in following study.)

We will begin with the key and take up each part of the action in the succession in which motion is transmitted.

1. Key.—Keys stick; that is, after being struck, they fail to come up quickly, if at all. First ascertain if the trouble is really in the key, or in the upper part of the action. To do this, lift the extension or wippen until the upper part of the action is entirely free from the key, so that you may test the key independently. Some keys are leaded so that they will fall in front of the balance rail, others so that they will fall back of it; in either case, lift the low end and let go, to see if it will fall by its own weight. If it seems quite free, you may know the trouble is not in the key; you will also find that when you release the extension or wippen, it will not fall readily, showing that the trouble lies in the upper part.

If the trouble is found in the key, examine the guide pin. See if it is placed in a direct line with the key. If so, and it still binds, enlarge the hole by pressing the wood back slightly with some wedge-shaped instrument, if you have not a pair of the key pliers which are used for this purpose. See that the cloth, with which the hole is bushed, is not loose and wrinkled. Do not oil or grease the guide pin unless such treatment has been previously resorted to, as the polished pin will work more freely in the dry cloth. Do not pinch hard on the pin with rough pliers and spoil the polished surface.

Sometimes you will find one key warped so that it rubs on the next, in which case, plane off a slight shaving to free it. Sometimes changing the position of the guide pin will straighten or level the key and make it work all right.

The balance pin is subject to some of the same difficulties as the guide pin. See that it sets properly and is not bound by the mortise.

Sometimes a splinter will be found on one side of a key where the lead has been put in. A piece of any foreign material between two keys generally causes both to stick.

Where the action is too deep, that is, the keys go down farther than they ought, place cardboard washers under the felt ones around the guide pin, or raise the felt strip under back end of keys.

Where the action is too shallow, place thin washers under those around the balance pin. When this is done, the whole action must be regulated accordingly, as this alteration will make a change in the working of the upper part of the action.

2. The Bottom or Capstan.—This should be so adjusted that when the key falls back to its rest position, the point of the jack will just spring into its place in the nose of the hammer butt. If held too high, the jack fails to catch in the nose, and the key may be struck without producing any effect on the hammer. When the bottom or capstan is too low, the point of the jack will be some distance below the notch, which will cause what is known as lost motion, it being necessary to depress the key a portion of its depth before the jack can act upon the hammer. Depress the key slowly, watching the hammer, and the fault will be discovered.

After a piano has been used for some time, the keys that are struck most frequently (those in the middle of the instrument) will be found to have this fault. The felts under the keys and those which are between the working parts of the action become compressed or worn so that the jack will be found to set so low that there will be lost motion in the key. In this case, loosen one of the screws in the bottom and turn the other down so as to move the jack upward until nearly all lost motion is taken up. A little play is generally necessary, but very little. In case the action has a capstan, simply turn it upward.

3. Back Check.—Blocking is most usually caused by the back check being too near the back catch, so that when the key is struck, the back check holds the hammer against the string. This should be seen after raising the bottom or capstan as above referred to. It will be observed that when this is done on account of the wear of the felts, the back check will stand much nearer the back catch than it did before, and will need bending back so as to give the hammer plenty of "rebound." A steel instrument with properly shaped notches at the point, called a regulator, is used for bending wires in regulating the action. See that the wires stand as nearly in line as is possible. In old actions that are considerably worn, however, you will be obliged to alter some more than others.

4. Bridle and Bridle Wire.—In putting in a new bridle, it should be doubled over at the end and secured to the hammer butt by a small tack. Be sure you get it exactly the same length as the others; otherwise it will be necessary to bend the bridle wire out of line. Some tuners glue the bridle around the back catch stem, but the above method is preferable.

The purpose of the bridle is to jerk the hammer back quickly and the wire must be set, neither so far back as to check the stroke of the hammer, nor so far forward that the bridle is too slack to draw upon the hammer.

5. Jack.—The jack itself seldom gets out of order. So long as its flange does not come unglued in the wippen, or its spring get out of place or broken, or get tight in its joint, it will need nothing. Its adjustment and action is controlled by the bottom or capstan, and the regulating button.

6. Regulating Button.—This button determines the point in the stroke of the hammer where the jack flies off from the nose of the butt. If the button is too high, the jack does not fly off soon enough, and the result is, that the hammer either blocks against the string or bounces from the jack after the stroke has been made, striking the string a second or third time from one stroke of the key. The felt punching on the lower side of the button often wears until this trouble prevails. Lower the button by turning down the screw on top of the regulator rail; if lowered too far, however, the action is weakened by causing the jack to fly off too soon, without giving the hammer a sufficient impulse. A regulating screwdriver is used for this, but in its absence, a wire hook, similar to a shoe buttoner, will turn the screw.

The block rail is properly adjusted at the factory and requires no attention.

7. Hammer Butt.—The felts and leather on the heel of the hammer butt wear out and must be replaced. The felt cushion, that is lowest and farthest to the left (see illustration), is the one that wears out first. The jack, in returning to the notch, strikes this cushion, and in time wears it away so that the jack in returning strikes the wood of the hammer butt, producing a sharp click, which is very annoying, to say the least. This click is heard at the instant the key rises to its rest position. Sometimes, however, a similar click is produced by the top of the key striking the board which is set over the keys, due to the cloth being eaten off by moths, or a pencil or some other article lying on the keys back of this board.

The center pin in the butt of some cheap actions is not held in the butt by metal clip and screw, and if it gets loose so that it works out, must be replaced by a larger pin. The size of center pins generally used in the factory, is .050 of an inch in diameter; the size for repairing should be .053. All of the best actions have the set screw with which to make the pin fast in the butt.

Hammers stick when the center pin is too tight in the flange. The bushing in the flange often expands. Some tuners oil at the ends of the pin with kerosene or wet it with alcohol, which is very good; but a better plan is to shrink the bushing with a drop of water on each side so that it will penetrate the bushing. After this is done, the piano cannot be used for a day or two, as the water first swells the bushing, making all the hammers stick; but when they are dry again, they will be found free. This may seem a curious method, but you need not be afraid of it; it is the most effective.

Before leaving the hammer butt, see that the hammer spring is in its place.

8. Hammer Stem.—These sometimes warp, split, crack, or come unglued at the butt or hammer. If twisted so far that it does not strike properly on the strings, or that it binds against the next hammer, the best thing is to put in a new stem. If merely split or unglued, it may be repaired. Sometimes a click is heard and it will seem impossible to find the cause, the hammer and stem apparently perfect, but a close examination will reveal a looseness in the stem somewhere.

In putting in a new shank, drill or chip out the old one, scrape the holes out clean, take your measure carefully, and do not make the new shank too tight, but large enough to fill the hole snugly. Apply glue to the ends of the shank and also in the holes. Cedar is used in some makes, but good maple is stronger, and is more generally used.

9. Hammers.—When too hard, soften with a felt pick. Do not raise the felt up, but stick the pick in the felt just back of the point and this will loosen it up and make it softer and more elastic. Where the strings have worn deep grooves, sandpaper them down nearly even and soften the felt as above.

In regluing the felt to the head, glue only the back ends of the felt, and clamp with strong rubber band till the glue sets. Use tailor's chalk (fuller's earth) to clean hammer felts. To harden or draw felts back in shape, place a damp cloth over them, and then pass a hot iron over it.

10. Dampers.—Damper felt often gets hardened so that when it comes against the vibrating string, it causes a sort of buzzing sound. Loosen it up with the pick. Imperfect damping can sometimes be corrected in the same way.

The damper head sometimes turns round on its wire, leaving one or two strings undamped. Tighten the set screw. See that the dampers are in line; and that they will stop the tone properly when the key is released.

Damper springs sometimes break. It is necessary to take out the damper lever to put in a new one.

See that the spoons are in line and work properly. Press the sustaining pedal down, and see if all the dampers are in line; if not, bend the damper wires with the regulator until they line up perfectly.

11. Damper Rod.—When the sustaining pedal squeaks, look first to the pedal, then to the wooden rods leading up to the damper rod. If the trouble is found in any of these, or the springs, use sperm oil or vaseline.

Catch hold of the damper rod at the left behind the action and work it. If it squeaks, you will have to take out the action and oil the swings where they are hinged to the main rail.


1. If you should find a key sticking, how would you determine the cause?

2. Name all the defects to which the key is subject.

3. Describe the proper adjustment of bottom or capstan.

4. Give two causes of blocking.

5. Give the purpose of the regulating button, and its proper adjustment.




1. The key in the square piano is subject to the same troubles as that of the upright, and requires the same treatment. However, the keys being much longer are more liable to cause trouble by warping.

2. Bottom or Key Rocker.—Unlike in the upright action, the jack is attached directly to the bottom; but, lowering or raising the bottom has the same effect in both cases. The screws regulating the height of the jack can be gotten at with a proper screwdriver. If you have to take out the key in order to regulate the bottom, first take particular notice of the conditions in respect to the operation of the jack on the hammer. Work the key slowly, to discover if there is lost motion. Decide which way the bottom must go and how far, so that you will not have to remove and replace the key more than once or twice to adjust it. In taking out the key, remove the board which is set edgewise over the keys immediately back of where the fingers strike, by taking out the screw at each end. Lift the hammer with the finger until the jack falls out of place; then by lifting the key off the balance pin it can be drawn out. The back check will sometimes rub so hard against the regulating button that it will be bent somewhat, and must be adjusted after the key is replaced.

The bottom is often found to have shrunken; it rattles at every stroke of the key. This can generally be stopped by simply turning the back screw down until tight, which can be done without taking the key out. This will rarely be found to alter the jack enough to cause it to fail to return to the notch in the butt. After doing this, however, it is well to examine for such a condition.

A sluggish motion of the jack is often found in old square pianos caused by the swelling of the wood, at the point where the jack is hinged to the bottom, or by the center pin's becoming foul from oxide. This will cause the jack to fail at times to operate on the hammer, especially in quick repetition. The key is struck with no response. Take out the bottom entirely, and with the fingers press the sides of the bottom inward; at the same time, work the jack back and forth. This will generally free it if the jack-spring is all right.

3. Jack.—As in the upright, the behavior of the jack depends entirely upon the surrounding members. A very common occurrence in the square piano is a broken jack-spring. This spring is concealed in a groove on the under side of the bottom, with a linen thread leading around the end of the jack and held fast by a wooden plug. If the spring is found to be long enough, drive out the plug, attach a new thread to the spring, and fasten as before. If a new spring is needed, one may be made by wrapping some small wire round a piece of music wire of the right size.

4. The back check, hammer stem and regulating button are subject to the same faults as their counterparts in the upright, which may be remedied in the same way. Bridles and hammer springs are not needed in the square, as the weight of the hammer, moving in a vertical direction, is sufficient to bring it to its rest position.

5. Hammers, when made of felt, will of course require the same treatment as those in the upright. In many old squares the hammers are built up of buckskin. If this becomes beaten down hard, it is well to cap the hammer with a new soft piece of buckskin, gluing only at the back ends.

6. Butts and Flanges.—A click just as the key comes up, indicates that the felt cushion, against which the jack rests, is worn out and must be replaced.

In all square actions the center pin, in the butt, is held by friction alone, but rarely gets loose; if it should be found loose, put in a larger pin.

The flange, shown in the cut, is what is called a split flange. By the set screw T, the jaws can be regulated so that they neither clamp the center pin so tightly as to make the action sluggish nor so loosely as to let the hammer wabble.

If the bushing cloth is found to be badly worn, it is better to put in new, which must be done neatly, or the result will not be satisfactory.

Hammer flanges, like all other wooden parts, shrink away from the screw heads and allow the hammer to drift to one side or rattle. While the action is in the piano, strike the keys to see if there are any that strike improperly. Mark the keys so as to indicate just what the trouble is, so that you will know how to remedy it when the action is out. If the hammers are set so close that they rub against each other, you may have to cut off a slight shaving of felt, but this is rarely necessary; for if properly placed, there is generally room for all; yet sometimes the expansion of the felt or warping of the shank makes cutting necessary.

7. Dampers.—The dampers in the square action depend entirely upon their weight for their efficiency in damping the strings and returning after being raised by the key. Often, after the key is struck, the damper will not return to its place and the string is undamped. This is generally found to be caused by the wire sticking in the hole through which it passes, the wire being rusty or bent or some foreign substance being in the hole round the wire. The bushing cloth in the hole may be in such condition as to retard the free passage of the damper wire, in which case the wire may be heated with a match and run up and down a few times through the hole, which will free it. The damper may not fall readily on account of a sluggish joint in the flange. Work it back and forth as far as it will go a few times; if necessary, take it off the damper rail and look for the cause of the trouble.

Damper flanges get loose on the damper rail and work to one side, causing defective damping and rattling. See that they are all tight, and in their places.

Damper lifter buttons sometimes hold the damper off the string. See that the top button falls so low that the damper lever does not touch it when the key is released. This is accomplished by altering the lower button. Examine the damper felts to see if they are moth-eaten, or have become hardened or in any way impaired. Notice the adjustment of the shade; that it is not too low or too high. The purpose of the shade is to prevent the damper levers from flying up; but it should be high enough so that the levers do not touch it when the key is depressed gently.

Defective damping is one of the most annoying conditions, and when one is employed to regulate a piano thoroughly and put it in order, he should see that no key is left in which this occurs. Strike each key and immediately let it up to see if it stops the sound quickly, or, in other words, damps perfectly; if it does not, find the cause and regulate until satisfactory.

8. The grand action being, in principle, practically the same as that of the square and the upright, containing the same mechanism as is found in those actions, it is needless to give special instructions concerning it; as the previous work has given the pupil a thorough knowledge of the requirements of all actions, their common faults, and proper methods of regulating to bring about satisfactory results. Let us merely remark: Study thoroughly the behavior of every component part of each action that comes under your observation; understand what each part is for, why it is there, and how it works or should work properly to fill its office. Then regulate and try for results. If you have natural mechanical genius, a little experience will prepare you to do all regulating and repairing with skill and quickness.


A few miscellaneous difficulties, common to all styles of actions, are occasionally met with and need to be rectified.

1. Broken Hammer Shank.—Glue the ends, lay a nicely fitting piece of wood, well coated with glue, on each side and wrap with binding wire. If it is broken off up so close to the hammer as not to permit this, drill a hole through the hammer head in line with the center of the shank, with a small-sized screwdriver such as watchmakers use, and run the wire through this and around the shank, drawing it firm; glue as before; when dry it will be as strong as ever. When the shank is broken off close to the butt, the same treatment will sometimes answer, but the strain here is so much greater that it is sometimes necessary to put in a new shank. In fact, it is always better to do so.

2. Flanges, damper heads, and all small wooden parts are liable to break or come unglued. The watchmaker's screwdriver, the binding wire and the glue must always be at hand for these emergencies. These breaks are generally in places where wrapping is not permissible, and you are compelled to drill. Keep the screwdriver well sharpened and the drilling is easy.

3. Ivories.—When unglued, scrape the old glue off, apply glue to both surfaces and clamp with an ivory clamp or rubber band until the glue is firm. Apply the same treatment to ebony sharps.

4. Leads in the keys and the dampers of the square piano get loose and rattle. Hammer them just enough to tighten; too much might split the key.

5. Friction.—Where different materials, such as wood and felt, would rub together they are covered with black lead to lubricate them. The point of the jack where it comes in contact with the butt, the toe of the jack which strikes the regulating button, and the long wooden capstan which takes the place of the extension and works directly on the under side of the wippen, which is covered with felt, are black-leaded. When a key squeaks and goes down reluctantly, the trouble can usually be traced to these places; especially to the wooden capstan, the black lead having worn away. Use powdered black lead on these parts.

There are many things in this kind of work that require only the exercise of "common sense." These we have omitted to mention, treating only of those things the student does not know intuitively.


1. When a key snaps or clicks at the instant it is let up, give two or more conditions that might cause it.

2. When a key simply rattles, what parts of the action would you examine for the trouble?

3. When a key is struck and there is no response, what may be the cause?

4. Give two causes for defective damping in a square piano.

5. Give cause of and remedy for a squeaking key.



Before commencing the systematic study of piano tuning, we want to impress the student with a few important facts that underlie the great principles of scale building and general details of the art.

If you have followed the suggestions, and thoroughly mastered the work up to this point you should now have some idea of the natural and artificial phenomena of musical tones; you should have a clear knowledge at least of the fundamental principles of harmony and the technical terms by which we designate intervals and their relation to each other; a knowledge of the general and specific construction of the different types of pianos and their actions, and the methods employed to put them in perfect working condition mechanically. This admitted, we are ready to consider the art of tuning—one, the appreciation of which is in direct proportion to the understanding of it. Let us now view this art for a moment in its past, present and future phases.

You may be a little surprised at what we are about to tell you, but it is a fact, gleaned from long experience in traveling and observation, that many, verily, the majority of pretending tuners have not so much practical knowledge of a piano as you should now have. We have no doubt that you, if you have a musical ear, could, without further instruction, improve an instrument that was extremely out of tune. You could detect and improve a tone which you should find extremely sharp or flat; you could detect and improve a unison that might be badly out, and you might produce an entire scale in which none of the chords would be unbearably rasping. But this is not enough. You should aspire to perfection, and not stop short of it.

It may seem to us who are musicians with thorough knowledge of the simpler laws of music, that a scale of eight tones is a simple affair; simply a natural consequence; the inevitable arrangement; but a historical investigation will prove our mistake. We will not go into the complexities of musical history; suffice it to say that the wisest philosophers who lived prior to the fourteenth century had no idea of a scale like that we have at the present day.

In piano tuning, as in other arts, many theories and conjectures have been advanced regarding the end to be sought and the means by which to gain it. There must be a plan—a system by which to work. The question is: What plan will insure the most perfect results with the least amount of labor? In Piano Tuning, this plan is called the Temperament.

Webster defines the word thus: "A system of compromises in the tuning of pianofortes, organs," etc. Later on we will discuss fully what these compromises are, and why they exist; for it is in them that the tuner demonstrates his greatest skill, and to them that the piano owes its surpassing excellence as a musical instrument, and, consequently, its immense popularity. For the present, the term "temperament" may be considered as meaning the plan or pattern from which the tuner works.

No subject of so great importance in the whole realm of musical science has been so strangely neglected as the method of setting a temperament. Even musicians of high learning, in other respects, give little attention to scale building, and hence they differ widely on this topic. There can be but one "best way" of doing a thing, and that best way should be known and followed by the profession; but, strange to say, there are a half dozen systems of setting the temperament in vogue at the present time. The author has, in his library, a book on "Temperament" which, if followed, would result in the production of a scale in which every chord would be unbalanced, harsh and unbearable. This is mentioned merely to call attention to the fact that great differences of opinion exist among scientific men regarding this important subject.

In the author's practice, he was curious to try the different methods, and has tuned by all the systems of temperament in vogue at the present, or that have ever been used extensively. His experience has proved that all but one is hampered with uncertainty, difficulty of execution or imperfection in some respect.

A system which will positively insure the strictest uniformity of difference in pitch of any given interval in all the keys, and that makes use of the fewest intervals in tuning and the easiest ones—those in which a discrepancy is most readily perceived by the ear, is the best system to adopt and follow. Such a system is the one followed by the author for years with the most satisfying results. He does not claim any high honor by this statement, but does claim that, while his system differs but slightly from some of the others, it is more certain to produce the best results, is the simplest to understand, is the easiest to follow, and, consequently, is the best.

To become a piano tuner of the highest skill, many things are necessary; but what may be lacking at the outset may be acquired by study and practice. More depends upon the ear than upon anything else; but no person, however talented, has a sufficiently acute perception to tune perfectly without some culture. Some practice in tuning is necessary to bring the ear to that acuteness of perception so indispensable in certain portions of the instrument. It may also be said that no extraordinary talent for music is absolutely necessary, since many of the best tuners are not musicians in any sense of the word. Patience and perseverance, associated with conscientiousness and an insatiable desire to excel, are among the foremost requirements. Having these it only remains to gain a thorough knowledge of every detail of the work; a little practice will bring skill and dexterity.

Finally, we would impress the student with the strenuous importance of thoroughly mastering the lessons which immediately follow. You should be inspired with the utmost confidence, both in yourself and in the possibilities of the profession to those who merit a reputation. And, while this lesson contains little technical instruction, if by its study the pupil is impressed with the maxims herein presented, and is inspired to make earnest effort in his future work, both in acquiring and in practicing the art of Piano Tuning, the author will feel that its mission is, by no means, the least significant one in the course.



Some tuners favor the term, "laying the bearings," others say "setting the temperament." The former is more commonplace, as it merely suggests the idea of laying a number of patterns by which all others are to be measured. The latter term is extremely comprehensive. A lucid definition of the word "temperament," in the sense in which it is used here, would require a discourse of considerable length. The following statements will elicit the full meaning of the term:

The untutored would, perhaps, not think of setting a temperament to tune by. He would likely begin at some unfavorable point, and tune by various intervals, relying wholly upon his conception of pitch for the accuracy of the tones tuned, the same as a violinist in tuning his four strings. To be sure, pitch has to be reckoned as a rude guide in setting the tones; but if pitch alone were the guide we would never attain to any degree of perfection in scale forming. We could never adjust our tones to that delicate fineness so much appreciated, which gives to the instrument its surpassing brilliancy.

Beats, Waves, Pulsations.—To obtain absolute accuracy the tuner is guided by beats, waves or pulsations. These three words refer to one and the same thing, a phenomenon that occurs in certain intervals when two tones are sounded together that are not in exact tune. These terms must not be confounded with the term "sound wave" or "vibrations" so often used in discussions on the theory of sound. However, we think the student is thoroughly familiar with these terms. The rate of vibration of two tones not in a favorable ratio, may produce the phenomenon known as "beats, waves, or pulsations." Vibrations may exist either with or without pulsations.

These pulsations are most perceptible in the unison, the octave and the fifth. They are more easily perceived in the unison than in the octave, and more easily in the octave than in the fifth. They are also perceptible in the perfect fourth, the major and minor third and some other intervals, but on account of their obscurity, and because these intervals are unnecessary in tuning they have long since been abandoned in "temperament making" (with the exception of the perfect fourth) by most tuners, although a few still make use of it. We do not say that the fourth is unsafe to tune by, but you will see later on why it is not best to make use of it.

The Fischer System or method of "setting the temperament" has these advantages: It uses but two kinds of intervals: the fifth and octave; by employing two whole octaves in place of one or one and a half, nearly all of the middle section of strings is brought up in pitch which insures that the temperament will stand better while the remaining strings are being tuned; and the alternate tuning of the fifth and octave makes the system exceedingly easy to learn, enabling the tuner to work with less mental strain. Also the two-octave system gives a greater compass for testing, thus insuring greater accuracy.

If you have access to a piano, it will now be well for you to begin training the ear to perceive the pulsations. If you cannot use a piano, you can train very well by the use of a mandolin, guitar, violin, zither, or any stringed instrument. An instrument with metal strings, however, is better, as the vibrations are more perfect.

You will, of course, know that the front top panel of the case has to be removed to give access to the tuning pins, and that you should have a regular tuning hammer and set of mutes to begin with. The panel is held in place in various ways: sometimes with buttons, sometimes with pins set in slots, and sometimes with patent fastenings; but a little examination will reveal how it may be removed.

To produce a tone of a certain pitch, the string must be of the right thickness and length. These items are decided by the scale draughtsman in the factory; if incorrect, the tuner can do nothing to improve them.

To produce the correct pitch, the string must be of the right tension, which is brought about by winding one end of the string around the tuning pin until the proper degree of tension is reached. This must be decided by the ear of the tuner. Two strings of equal thickness and equal length produce the same tone when brought to the same tension; the result being known as "unison." A defect in the unison being the easiest way in which to detect the beats, we advise that the student practice on it first.

After taking out the panel, the first thing to do is to place your rubber mute between two trios of strings (if the piano is an upright which usually has three strings to a note) so that only two strings sound when the key is struck. Select some key near the middle of the keyboard. Strike the key strongly and hold it down. If the two sounding strings give forth a smooth, unwavering tone—a tone that sounds as if it came from one string, the unison is perfect. If you find it so, remove the mute and place it on the other side of the trio of strings. If the piano has been tuned recently by an expert, you may have to continue your search over several keys before you find an imperfect unison; but you will rarely find a piano in such perfect tune that it will not contain some defective unisons. However, if you do not succeed in finding a defective unison, select a key near the middle of the key-board, place your mute so that but two strings sound, and with your tuning hammer loosen one of the strings very slightly. Now you will notice a throbbing, beating sound, very unlike the tone produced when the strings were in exact unison. See if you can count the beats. If you have lowered the tension too much, the beats will be too rapid to permit counting. Now with a steady and gradual pull, with the heel of the hand against some stationary part, bring the string up slowly. You will notice these waves become slower and slower. When they become quite slow, stop and count, or wave the hand in time with the pulsations. After practicing this until you are sure your ear has become accustomed to the beats and will recognize them again, you may proceed to perfect the unison. Bring the string up gradually as before, and when the unison is reached you will hear one single, simple, musical tone, as though it were from a single string. Never have more than two strings sounding at once. You might go over the entire key-board now and correct all the unisons if the scale is yet fairly good. See which string is, in your opinion, the nearest to correctness with respect to the scale, and tune the other one, or two, as the case may be, to it. If the scale is badly out of symmetry, you will not get very good results without setting a temperament; but the tones will sound better individually. This experiment is more for practice than for improving the piano.

The cause of the waves in a defective unison is the alternate recurring of the periods when the condensations and rarefactions correspond in the two strings and then antagonize. This is known in physics as "interference of sound-waves."

The Octave.—When perfectly tuned, the upper tone of the octave has exactly double the number of vibrations of the lower. If the lower tone vibrates 1000 per second, the upper will vibrate 2000. Of course, the ear cannot ascertain in any way the number of vibrations per second; we use these figures for scientific demonstration only. However, there is an instrument called the Siren which is constructed for the purpose of ascertaining the number of vibrations per second of any given tone, and which is delicately accurate in its work. By its assistance we know, definitely, a great many things regarding our musical scale of which we would otherwise be ignorant. But, while we cannot, by the ear, ascertain these numbers, we can, by the "interference of sound-waves" above referred to, ascertain, to the most delicate point, when the relative vibration of two strings is mathematically exact, if they are tuned to a unison, octave, fifth, etc.

Practice now on tuning the octave. Find an octave in which the upper tone is flat. Mute all but one string in the lower tone to make sure of getting a pure tone, then select one string (the middle one if a piano has three strings) of the upper octave and proceed to pull it up gradually until all beats disappear. This being done, bring up the unisons.

The Fifth.—In our system, when we speak of a fifth, we mean a fifth upward. The fifth to C is G, to G is D, and so on.

The vibration of the fifth is one and a half times that of its fundamental. If a certain F vibrates 100, the C, a fifth above, will vibrate 150, if tuned so that no waves are heard; but for reasons which will be fully explained later, the fifth cannot be tuned with mathematical precision. On account of certain peculiarities in our tempered scale, the fifth must always be left somewhat flatter than perfect. This fact is always learned with some astonishment by beginners.

In your practice on tuning the fifth, first tune it perfectly, so that no waves are perceptible; then flat it so that there are very slow waves; less than one per second. Some authorities say there should be three beats in five seconds; but the tuner must learn to determine this by his own judgment. The tempering of the fifth will be treated exhaustively in subsequent lessons.

We advise that you confine your practice to the unison until you are sure you have a clear conception of its peculiarities in all portions of the key-board, except the extreme lower and upper octaves; do not try these yet. Do not begin to practice on the octave until you are very familiar with the beats in the unison. By gradual progress you will avoid confusing the ear, each step being thoroughly mastered before advancing to the next. Remember, there is nothing that is extremely difficult in learning to tune if you but understand what has to be done, go about it systematically, and have plenty of patience.

In this lesson we give you our system of setting the temperament; that is, the succession in which the different tones of the temperament are tuned. We advise, however, that you do not attempt to set a temperament until after studying Lesson IX, which enters into the theory of temperament, testing, etc.

Two octaves are used for the temperament: an octave above, and an octave below middle C. Middle C can be told by its being, the C nearest the name of the piano on the name board. In other words, it is the fifth C from the highest C, and the fourth from the lowest in the modern piano, which has seven and a third octaves.

The diagram illustrates the two octaves of the key-board, and shows how each key is designated in giving the system of temperament.

Pitch.—The Piano Manufacturers' Association has established what is known as "international pitch." Tuning-forks made to this pitch are marked "C-517.3," meaning that our 3C vibrates 517.3 per second. Concert pitch is nearly a half step higher than this. Some manufacturers still tune their instruments to this higher pitch.

If it is desired to tune a piano to a certain pitch, say concert pitch, tune the C that is an octave above middle C by a concert pitch tuning-fork or pipe. If, however, the piano is too much below that, it is not safe to bring it up to it at one tuning. But, say it will permit tuning to concert pitch; after this C (3C) is well laid, tune middle C (2C) by it, then tune the C octave below middle C (1C) to middle C. Having 1C for a starting point, proceed by tuning a fifth up, then its octave, then a fifth, then an octave, always tuning the octave whichever way is necessary to keep within the two octaves.

The simplicity of this system can be readily seen; yet for the use of beginners, we give on the following page the whole succession of intervals as they are taken in setting the temperament.


C[] D[] F[] G[] A[] C[] D[] F[] G[] A[] C D E F G A B C D E F G A B C * 1C, 1D, 1E, etc. 2C, 2D, 2E, etc. 3C ———————————————- ————————————————

Middle C begins second octave; known by the asterisk (*) under it.


First, tune 3C by tuning pipe, or as directed.

By this, tune 2C, and by 2C tune 1C; then tune as follows:

By 1C tune 1G fifth above, " 1G " 2G octave above, " 1G " 2D fifth above, " 2D " 1D octave below, By 1D tune 1A fifth above, " 1A " 2A octave above, " 1A " 2E fifth above, " 2E " 1E octave below, " 1E " 1B fifth above, " 1B " 2B octave above, " 1B " 2F[] fifth above, " 2F[] " 1F[] octave below, " 1F[] " 2C[] fifth above, " 2C[] " 1C[] octave below, " 1C[] " 1G[] fifth above, " 1G[] " 2G[] octave above, " 1G[] " 2D[] fifth above, " 2D[] " 1D[] octave below, " 1D[] " 1A[] fifth above, " 1A[] " 2A[] octave above, " 1A[](B[b]) " 2F fifth above, " 2F " 1F octave below, " 1F try 2C fifth above.

You will observe this last fifth brings you back to the starting-point (C). It is called the "wolf," from the howling of its beats when the tuner has been inaccurate or the piano fails to stand.


1. What is the cause of the beats or pulsations?

2. Have you practiced tuning the unison?

3. Can you distinguish the beats clearly?

1  2  3     Next Part
Home - Random Browse