Scientific American Supplement, No. 286 - June 25, 1881
Author: Various
1  2     Next Part
Home - Random Browse


NEW YORK, JUNE 25, 1881

Scientific American Supplement. Vol. XI, No. 286.

Scientific American established 1845

Scientific American Supplement, $5 a year.

Scientific American and Supplement, $7 a year.

* * * * *


I. ENGINEERING AND MECHANICS.—One Thousand Horse Power Corliss Engine. 5 figures, to scale, illustrating the construction of the new one thousand horse power Corliss engine, by Hitch, Hargreaves & Co.

Opening of the New Workshop of the Stevens Institute of Technology. Speech of Prof. R.W. Raymond, speech of Mr. Horatio Allen.

Light Steam Engine for Aeronautical Purposes. Constructed for Capt. Mojoisky, of the Russian Navy.

Complete Prevention of Incrustation in Boilers. Arrangement for purifying boiler water with lime and carbonate of soda.—The purification of the water.—Examination of the purified water.—Results of water purification.

Eddystone Lighthouse. Progress of the work.

Rolling Mill for Making Corrugated Iron. 1 figure. The new mill of Schultz, Knaudt & Co., of Essen, Germany.

Railway Turntable in the Time of Louis XIV. 1 figure. Pleasure car. Railway and turntable at Mary-le-Roy Chateau, France, in 1714.

New Signal Wire Compensator. Communication from A. Lyle, describing compensators in use on the Nizam State Railway, East India.

Tangye's Hydraulic Hoist. 2 figures.

Power Loom for Delicate Fabrics. 1 figure.

How Veneering is Made.

II. TECHNOLOGY AND CHEMISTRY.—The Constituent Parts of Leather. The composition of different leathers exhibited at the Paris Exhibition.—Amount of leather produced by different tonnages of 100 pounds of hides.—Percentage of tannin absorbed under different methods of tanning.—Amounts of gelatine and tannin in leather of different tonnages, etc.

Progress in American Pottery.

Photographic Notes.—Mr. Waruerke's New Discovery.—Method of converting negatives directly into positives.—Experiments of Capt. Bing on the sensitiveness of coal oil—Bitumen plates.—Method of topographic engraving. By Commandant DE LA NOE.—Succinate of Iron Developer.—Method of making friable hydro-cellulose.

Photo-Tracings in Black and Color.

Dyeing Reds with Artificial Alizarin. By M. MAURICE PRUD'HOMME.


Physical Science in Our Common Schools.—An exceptionally strong argument for the teaching of physical science by the experimental method in elementary schools, with an outline of the method and the results of such teaching.

On the Law of Avogadro and Ampere. By E. VOGEL.

IV. GEOGRAPHY, GEOLOGY, ETC.—Petroleum and Coal in Venezuela.

Geographical Society of the Pacific.

The Behring's Straits Currents.—Proofs of their existence.

Experimental Geology.—Artificial production of calcareous pisolites and oolites.—On crystals of anhydrous lime.—4 figures.

V. NATURAL HISTORY, ETC.—Coccidae. By Dr. H. BEHR.—An important paper read before the California Academy of Sciences.—The marvelous fecundity of scale bugs.—Their uses.—Their ravages.—Methods of destroying them.

Agricultural Items.

Timber Trees.

Blood Rains.

VI. MEDICINE AND HYGIENE.—Medical Uses of Figs.

Topical Medication in Phthisis.

VII. ARCHITECTURE, ETC.—Suggestions in Architecture.—Large illustration.—The New High School for Girls, Oxford, England.

* * * * *


MR. E. H. PLUMACHER, U. S. Consul at Maracaibo, sends to the State Department the following information touching the wealth of coal and petroleum probable in Venezuela:

The asphalt mines and petroleum fountains are most abundant in that part of the country lying between the River Zulia and the River Catatumbo, and the Cordilleras. The wonderful sand-bank is about seven kilometers from the confluence of the Rivers Tara and Sardinarte. It is ten meters high and thirty meters long. On its surface can be seen several round holes, out of which rises the petroleum and water with a noise like that made by steam vessels when blowing off steam, and above there ascends a column of vapor. There is a dense forest around this sand-bank, and the place has been called "El Inferno." Dr. Edward McGregor visited the sand-bank, and reported to the Government that by experiment he had ascertained that one of the fountains spurted petroleum and water at the rate of 240 gallons per hour. Mr. Plumacher says that the petroleum is of very good quality, its density being that which the British market requires in petroleum imported from the United States. The river, up to the junction of the Tara and Sardinarte, is navigable during the entire year for flat-bottomed craft of forty or fifty tons.

Mr. Plumacher has been unable to discover that there are any deposits of asphalt or petroleum in the upper part of the Department of Colon, beyond the Zulia, but he has been told that the valleys of Cucuta and the territories of the State of Tachira abound in coal mines. There are coal mines near San Antonia, in a ravine called "La Carbonera," and these supply coal for the smiths' forges in that place. Coal and asphalt are also found in large quantities in the Department of Sucre. Mr. Plumacher has seen, while residing in the State of Zulia, but one true specimen of "lignite," which was given to him by a rich land-owner, who is a Spanish subject. In the section where it was found there are several fountains of a peculiar substance. It is a black liquid, of little density, strongly impregnated with carbonic acid which it transmits to the water which invariably accompanies it. Deposits of this substance are found at the foot of the spurs of the Cordilleras, and are believed to indicate the presence of great deposits of anthracite.

There are many petroleum wells of inferior quality between Escuque and Bettijoque, in the town of Columbia. Laborers gather the petroleum in handkerchiefs. After these become saturated, the oil is pressed out by wringing. It is burned in the houses of the poor. The people thought, in 1824, that it was a substance unknown elsewhere, and they called it the "oil of Columbia." At that time they hoped to establish a valuable industry by working it, and they sent to England, France, and this country samples which attracted much attention. But in those days no method of refining the crude oil had been discovered, and therefore these efforts to introduce petroleum to the world soon failed.

The plains of Ceniza abound in asphalt and petroleum. There is a large lake of these substances about twelve kilometers east of St. Timoteo, and from it some asphalt is taken to Maracaibo. Many deposits of asphalt are found between these plains and the River Mene. The largest is that of Cienega de Mene, which is shallow. At the bottom lies a compact bed of asphalt, which is not used at present, except for painting the bottoms of vessels to keep off the barnacles. There are wells of petroleum in the State of Falcon.

Mr. Plumacher says that all the samples of coal submitted to him in Venezuela for examination, with the exception of the "lignite" before mentioned, were, in his opinion, asphalt in various degrees of condensation. The sample which came from Tule he ranks with the coals of the best quality. He believes that the innumerable fountains and deposits of petroleum, bitumen, and asphalt that are apparent on the surface of the region around Lake Maracaibo are proof of the existence below of immense deposits of coal. These deposits have not been uncovered because the territory remains for the most part as wild as it was at the conquest.

* * * * *


We illustrate one of the largest Corliss engines ever constructed. It is of the single cylinder, horizontal, condensing type, with one cylinder 40 inches diameter, and 10 feet stroke, and makes forty-five revolutions per minute, corresponding to a piston speed of 900 feet per minute. At mid stroke the velocity of the piston is 1,402 feet per minute nearly, and its energy in foot pounds amounts to about 8.6 times its weight. The cylinder is steam jacketed on the body and ends, and is fitted with Corliss valves and Inglis & Spencer's automatic Corliss valve expansion gear. Referring to the general drawing of the engine, it will be seen that the cylinder is bolted directly to the end of the massive cast iron frame, and the piston coupled direct to the crank by the steel piston rod and crosshead and the connecting rod. The connecting rod is 28 feet long center to center, and 12 inches diameter at the middle. The crankshaft is made of forged Bolton steel, and is 21 inches diameter at the part where the fly-wheel is carried. The fly driving wheel is 35 feet in diameter, and grooved for twenty-seven ropes, which transmit the power direct to the various line shafts in the mill. The rope grooves are made on Hick, Hargreaves & Co.'s standard pattern of deep groove, and the wheel, which is built up, is constructed on their improved plan with separate arms and boss, and twelve segments in the rim with joints planed to the true angle by a special machine designed and made by themselves. The weight of the fly-wheel is about 60 tons. The condensing apparatus is arranged below, so that there is complete drainage from the cylinder to the condenser. The air pump, which is 36 inches diameter and 2 feet 6 inches stroke, is a vertical pump worked by wrought iron plate levers and two side links, shown by dotted lines, from the main crosshead. The engine is fenced off by neat railing, and a platform with access from one side is fitted round the top of the cylinder for getting conveniently to the valve spindles and lubricators. The above engraving, which is a side elevation of the cylinder, shows the valve gear complete. There are two central disk plates worked by separate eccentrics, which give separate motion to the steam and exhaust valves. The eccentrics are mounted on a small cross shaft, which is driven by a line shaft and gear wheels. The piston rod passes out at the back end of the cylinder and is carried by a shoe slide and guide bar, as shown more fully in the detailed sectional elevation through the cylinder, showing also the covers and jackets in section. The cylinder, made in four pieces, is built up on Mr. W. Inglis's patent arrangement, with separate liner and steam jacket casing and separate end valve chambers. This arrangement simplifies the castings and secures good and sound ones. The liner has face joints, which are carefully scraped up to bed truly to the end valve chambers. The crosshead slides are each 3 feet 3 inches long and I foot 3 inches wide. The engine was started last year, and has worked beautifully from the first, without heating of bearings or trouble of any kind, and it gives most uniform and steady turning. It is worked now at forty-one revolutions per minute, or only 820 feet piston speed, but will be worked regularly at the intended 900 feet piston speed per minute when the spinning machinery is adapted for the increase which the four extra revolutions per minute of the engine will give; the load driven is over 1,000 horsepower, the steam pressure being 50 lb. to 55 lb., which, however, will be increased when the existing boilers, which are old, come to be replaced by new. Indicator diagrams from the engines are given on page 309. The engine is very economical in steam consumption, but no special trials or tests have been made with it. An exactly similar engine, but of smaller size, with a cylinder 30 inches diameter and 8 feet stroke, working at forty-five revolutions per minute, made by Messrs. Hick, Hargreaves & Co. for Sir Titus Salt, Sons & Co.'s mill at Saltaire, was tested about two years ago by Mr. Fletcher, chief engineer of the Manchester Steam Users' Association, and the results which are given below pretty fairly represent the results obtained from this class of engine. Messrs. Hick, Hargreaves & Co. are now constructing a single engine of the same type for 1,800 indicated horse-power for a cotton mill at Bolton; and they have an order for a pair of horizontal compound Corliss engines intended to indicate 3,000 horse-power. These engines will be the largest cotton mill engines in the world.—The Engineer.

Result of Trials with Saltaire Horizontal Engine on February 14th and 15th, 1878. Trials made by Mr. L.E. Fletcher, Chief Engineer Steam Users' Association, Manchester.

Engine single-cylinder, with Corliss valves. Inglis and Spencer's valve gear. Diameter of cylinder. 30in.; stroke, 8ft.; 45 revolutions per minute.

No. of trials Total 1.H.P. [MB] Mean boiler pressure. [MP] Mean pressure on piston at beginning of stroke. [ML] Mean loss between boiler pressure and cylinder. [MA] Mean average pressure on piston. [W] Water Per I.H.P. per hour. [C] Coal per I.H.P. per hour.

No. of trials Total MB MP ML MA W C I.H.P. lb lb lb lb lb lb Trial No. 1. 301.89 46.6 44.11 2.53 21.23 18.373 2.699 Trial No. 2. 309.66 47.63 44.45 3.18 21.67 17.599 2.561 Means. 305.775 47.115 44.28 2.855 21.45 17.986 2.630

* * * * *


In our SUPPLEMENT No. 283 we gave reports of some of the addresses of the distinguished speakers, and we now present the remarks of Prof. Raymond and Horatio Allen, Esq.:


A few years ago, at one of the meetings of our Society of Civil Engineers we spent a day or so in discussing the proper mode of educating young men so as to fit them for that profession. It is a question that is reopened for us as soon as we arrive at the age when we begin to consider what career to lay out for our sons. When we were young, the only question with parents in the better walks of life was, whether their sons should be lawyers, physicians, or ministers. Anything less than a professional career was looked upon as a loss of caste, a lowering in the social scale. These things have changed, now that we engineers are beginning to hold up our heads, as we have every reason to do; for the prosperity and well-being of the great nations of the world are attributable, perhaps, more to our efforts than to those of any other class. When, in the past, the man of letters, the poet, the orator, succeeded, by some fit expression, by some winged word, to engage the attention of the world concerning some subject he had at heart, the highest praise his fellow man could bestow was to cry out to him, "Well said, well said!" But now, when, by our achievements, commerce and industry are increased to gigantic proportions, when the remotest peoples are brought in ever closer communication with us, when the progress of the human race has become a mighty torrent, rushing onward with ever accelerating speed, we glory in the yet higher praise, "Well done, well done!" Under these circumstances, the question how a young man is best fitted for our profession has become one of increasing importance, and three methods have been proposed for its solution. Formerly the only point in debate was whether the candidate should go first to the schools and then to the workshop, or first to the shop and then to the schools. It was difficult to arrive at any decision; for of the many who had risen to eminence as engineers, some had adopted one order and some the other. There remained a third course, that of combining the school and the shop and of pursuing simultaneously the study of theory and the exercise of practical manipulation. Unforeseen difficulties arose, however, in the attempt to carry out this, the most promising method. The maintenance of the shop proved a heavy expense, which it was found could not be lessened by the manufacture of salable articles, because the work of students could not compete with that of expert mechanics. It would require more time than could be allotted, moreover, to convert students into skilled workmen. Various modifications of this combination of theory and practice, including more or less of the Russian system of instruction in shop-work, have been tried in different schools of engineering, but never under so favorable conditions as the present. With characteristic caution and good judgment, President Morton has studied the operation of the scheme of instruction adopted in the Stevens Institute, and, noting its deficiencies, has now supplied them with munificent liberality, giving to it a completeness that leaves seemingly nothing that could be improved upon, even in a prayer or a dream. Still, no one will be more ready to admit than he who has done all this, that it is not enough to fit up a machine shop, be it never so complete, and light it with an electric lamp. The decision as to its efficiency must come from the students that are so fortunate as to be admitted to it. If such young men, earnest, enthusiastic, with every incentive to exertion and every advantage for improvement, here, where they can feel the throbbing of the great heart of enterprise, within sight of bridges upon which their services will be needed, within hearing of the whistles of a score of railroads, and the bells of countless manufactories which will want them; if such as these, trained under such instructors and amid such surroundings, prove to be not fitted for the positions waiting for them to fill, it will have been definitely demonstrated that the perfect scheme is yet unknown.


Impressed with the very great step in advance which has been inaugurated here this evening, I feel crowding upon me so many thoughts that I cannot make sure that, in selecting from them, I may not leave unsaid much that I should say, and say some things that I had better omit. Some years ago, when asked by a wealthy gentleman to what machine-shop he had best send his son, who was to become a mechanical engineer, I advised him not to send him to any, but to fit up a shop for him where he could go and work at what he pleased without the drudgery of apprenticeship, to put him in the way of receiving such information as he needed, and especially to let him go where he could see things break. Great, indeed, are the advantages of those who have the opportunity of seeing things break, of witnessing failures and profiting by them. When men have enumerated the achievements of those most eminent in our profession the thought has often struck me, "Ah! if we could only see that man's scrap heap."

There are many who are able to construct a machine for a given purpose so that it will work, but to do this so that it will not cost too much is an entirely different problem. To know what to omit is a rare talent. I once found a young man who could tell students what to store up in their minds for immediate use, and what to skim over or omit; but I could not keep him long, for more lucrative positions are always waiting for such men.

The advice I gave my wealthy friend was given before the Stevens Institute had developed in the direction it has now. The foundation of this advice, namely, to combine a certain amount of judicious practice with theory, is now in a fair way to be carried out, and although things will probably not be permitted to break here, the students will doubtless have opportunities for looking around them and supplementing their systematic instruction here by observation abroad.

* * * * *


We here illustrate one of a couple of compound engines designed and constructed by Messrs. Ahrbecker, Son & Hamkens, of Stamford Street, S.E., for Captain Mojaisky, of the Russian Imperial Navy, who intends to use them for aeronautical purposes. The larger of these engines has cylinders 33/4 in. and 71/2 in. in diameter and 5 in. stroke, and when making 300 revolutions per minute it develops 20 actual horse power, while its weight is but 105 lbs. The smaller engine—the one illustrated—has cylinders 21/2 in. and 5 in. in diameter, and 31/2 in. stroke, and weighs 63 lbs., while when making 450 revolutions it develops 10 actual horse power.

The two engines are identical in design, and are constructed of forged steel with the exception of the bearings, connecting-rods, crossheads, slide valves and pumps, which are of phosphor-bronze. The cylinders, with the steam passages, etc., are shaped out of the solid. The standards, as will be seen, are of very light T steel, the crankshafts and pins are hollow, as are also the crosshead bolts and piston rods. The small engine drives a single-acting air pump of the ordinary type by a crank, not shown in the drawing. The condenser is formed of a series of hollow gratings.

Steam is supplied to the two engines by one boiler of the Herreshoff steam generator type, with certain modifications, introduced by the designers, to insure the utmost certainty in working. It is of steel, the outside dimensions being 22 in. in diameter, 25 in. high, and weighs 142 lb. The fuel used is petroleum, and the working pressure 190 lb. per square inch.

The constructors consider the power developed by these engines very moderate, on account of the low piston speed specified in this particular case. In some small and light engines by the same makers the piston speed is as high as 1000 ft. per minute. The engines now illustrated form an interesting example of special designing, and Messrs. Ahrbecker, Son, and Hamkens deserve much credit for the manner in which the work has been turned out, the construction of such light engines involving many practical difficulties,—Engineering.

* * * * *

Mount Baker, Washington Territory, has shown slight symptoms of volcanic activity for several years. An unmistakable eruption is now in progress.

* * * * *


The chemical factory, Eisenbuettel, near Braunschweig, distributes the following circular: "The principal generators of incrustation in boilers are gypsum and the so-called bicarbonates of calcium and magnesium. If these can be taken put of the water, before it enters the boiler, the formation of incrustation is made impossible; all disturbances and troubles, derived from these incrustations, are done away with, and besides this, a considerable saving of fuel is possible, as clear iron will conduct heat quicker than that which is covered with incrustation."

J. Kolb, according to Dingler's Polyt. Journal, says: "A boiler with clear sides yielded with 1 kil. coal 7.5 kil. steam, after two months only 6.4 kil. steam, or a decrease of 17 per cent. At the same time the boiler had suffered by continual working."

Suppose a boiler free from inside crust would yield a saving of only 5 per cent. in fuel (and this figure is taken very low compared with practical experiments) it would be at the same time a saving of 3c. per cubic meter water. If the cleaning of one cubic meter water therefore costs less than 3c., this alone would be an advantage.

Already, for a long time, efforts have been made to find some means for this purpose, and we have reached good results with lime and chloride of barium, as well as with magnesia preparations. But these preparations have many disadvantages. Corrosion of the boiler-iron and muriatic acid gas have been detected. (Accounts of the Magdeburg Association for boiler management.)

Chloride of calcium, which is formed by using chloride of barium, increases the boiling point considerably, and diminishes the elasticity of steam; while the sulphate of soda, resulting from the use of carbonate of soda, is completely ineffectual against the boiler iron. It increases the boiling point of water less than all other salts, and diminishes likewise the elasticity of steam (Wullner).

In using magnesia preparation, the precipitation is only very slowly and incompletely effected—one part of the magnesia will be covered by the mire and the formed carbonate of magnesia in such a way, that it can no more dissolve in water and have any effect (Dingler's Polyt. Journal, 1877-78).

The use of carbonate of soda is also cheaper than all other above mentioned substances.

One milligramme equivalent sulphate of lime, in 1 liter, = 68 grammes sulphate of lime in 1 cubic meter, requiring for decomposition:

120 gr. (86-88 per cent.) chloride of barium of commerce—at $5.00 = 0.6c.

Or, 50 gr. magnesia preparation—at $10.00 = 0.5c.

Or, 55 gr. (96-98 per cent.) carbonate of soda—at $7.50 = 0.41c.

The proportions of cost by using chloride of barium, magnesia preparation, carbonate of soda, will be 6 : 5 : 4.


We need for carrying out these manipulations, according to the size of the establishment, one or more reservoirs for precipitating the impurities of the water, and one pure water reservoir, to take up the purified water; from the latter reservoir the boilers are fed. The most practical idea would be to arrange the precipitating reservoir in such manner that the purified water can flow directly into the feeding reservoir.

The water in the precipitating reservoir is heated either by adding boiling water or letting in steam up to 60 deg. C. at least. The precipitating reservoirs (square iron vessels or horizontal cylinders—old boilers) of no more than 4 or 41/2 feet, having a faucet 6 inches above the bottom, through which the purified water is drawn off, and another one at the bottom of the vessel, to let the precipitate off and allow of a perfect cleaning. In a factory with six or seven boilers of the usual size, making together 400 square meters heating surface, two precipitating reservoirs, of ten cubic meters each, and one pure water reservoir of ten or fifteen cubic meter capacity, are used.

In twenty-four hours about 240 cubic meters of water are evaporated; we have, therefore, to purify twenty-four precipitating reservoirs at ten cubic meters each day, or ten cubic meters each hour.

It is profitable to surround the reservoirs with inferior conductors of heat, to avoid losses.

The contents of the precipitating reservoirs have to be stirred up very well, and for this purpose we can either arrange a mechanical stirrer or do it by hand, or the best would be a "Korting steam stirring and blowing apparatus." In using the latter we only have to open the valve, whereby in a very short time the air driven through the water stirs this up and mixes it thoroughly with the precipitating ingredients. In a factory where boilers of only 15 to 100 square meters heating surface are, one precipitating reservoir of two to ten cubic meters and one pure water reservoir of three to ten cubic meters capacity are required. For locomobiles, two wooden tubs or barrels are sufficient.


After the required quantity of lime and carbonate of soda which is necessary for a total precipitation has been figured out from the analysis of the water, respectively verified by practical experiments in the laboratory, the heated water in the reservoir is mixed with the lime, in form of thin milk of lime, and stirred up; we have to add so much lime, that slightly reddened litmus paper gives, after 1/4 minute's contact with this mixture, an alkaline reaction, i.e., turns blue; now the solution of carbonate of soda is added and again stirred well.

After twenty or thirty minutes (the hotter the water, the quicker the precipitation) the precipitate has settled in large flocks at the bottom, and the clear water is drawn off into the pure water reservoir. The precipitating and settling of the impurities can also take place in cold water; it will require, however, a pretty long time.

In order to avoid the weighing and slaking of the lime, which is necessary for each precipitation, we use an open barrel, in which a known quantity of slaked lime is mixed with three and a half or four times its weight of water, and then diluted to a thin paste, so that one kilogramme slaked lime is diluted to twenty-five liters milk of lime.

Example.—If we use for ten cubic meters water, one kilogramme lime, or in one day (in twenty-four hours), 240 cubic meters 24 kg. lime, a vessel four or five feet high and about 700 liters capacity, in which daily 24 kg. lime with about 100 liters water are slaked and then diluted to the mark 600, constantly stirring, 25 liters of this mixture contain exactly 1 kg. slaked lime.

Before using, this milk of lime has to be stirred up and allowed to settle for a few seconds; and then we draw off the required quantity of milk of lime (in our case 25 liters) through a faucet about 8 inches above the bottom, or we can dip it off with a pail. For the first precipitate we always need the exact amount of milk of lime, which we have figured out, or rather some more, but for the next precipitates we do not want the whole quantity, but always less, as that part of the lime, which does not settle with the precipitate, will be good for use in further precipitations. It is therefore important to control the addition of milk of lime by the use of litmus paper. If we do not add enough lime, it prevents the formation of the flocky precipitate, and, besides, more carbonate of soda is used. By adding too much lime, we also use more carbonate of soda in order to precipitate the excess of lime. We can therefore add so much lime, that there is only a very small excess of hydrous lime in the water, and that after well stirring, a red litmus paper being placed in the water for twenty seconds, appears only slightly blue. After a short time of practice, an attentive person can always get the exact amount of lime which ought to be added. On adding the milk of lime, we have to dissolve the required amount of pure carbonate of soda in an iron kettle, in about six or eight parts hot water with the assistance of steam; add this to the other liquid in the precipitating reservoirs and stir up well. The water will get clear after twenty-five or thirty minutes, and is then drawn off into the pure water reservoir.


In order to be convinced that the purification of the water has been properly conducted, we try the water in the following manner. Take a sample of the purified water into a small tumbler, and add a few drops of a solution of oxalate of ammonia; this addition must neither immediately nor after some minutes cause a milky appearance of the water, but remain bright and clear. A white precipitate would indicate that not enough carbonate of soda had been added. A new sample is taken of the purified water and a solution of chloride of calcium added; a milky appearance, especially after heating, would show that too much carbonate of soda had been added.


1. The boilers do not need to be cleaned during a whole season, as they remain entirely free from incrustation; it is only required to avoid a collection of soluble salts in the boiler, and therefore it is partly drawn off twice a week.

2. The iron is not touched by this purified water. The water does not froth and does not stop up valves. The fillings in the joints of pipes, etc., do not suffer so much, and therefore keep longer.

3. The steam is entirely free from sour gases.

4. The production of steam is easier and better.

5. A considerable saving of fuel can soon be perceived.

6. The cost of cleaning boilers from incrustation, and loss of time caused by cleaning, is entirely done with. Old incrustations, which could not be cleaned out before, get decomposed and break off in soft pieces.

7. The cost of this purification is covered sufficiently by the above advantages, and besides this, the method is cheaper and surer than any other.

The chemical factory, Eisenbuettel, furnishes pure carbonate of soda in single packages, which exactly correspond with the quantity, stated by the analysis, of ten cubic meters of a certain water. The determination of the quantities of lime and carbonate of soda necessary for a certain kind of water, after sending in a sample, will be done without extra charge.—Neue Zeitung fur Ruebenzucker Industrie.

* * * * *


The exterior work on the new Eddystone Lighthouse is about two thirds done. In the latter part of April fifty-three courses of granite masonry, rising to the height of seventy feet above high water, had been laid, and thirty-six courses remained to be set. The old lighthouse had been already overtopped. As the work advances toward completion the question arises: What shall be done with John Smeaton's famous tower, which has done such admirable service for 120 years? One proposition is to take it down to the level of the top of the solid portion, and leave the rest as a perpetual memorial of the great work which Smeaton accomplished in the face of obstacles vastly greater than those which confront the modern architect. The London News says: "Were Smeaton's beautiful tower to be literally consigned to the waves, we should regard the act as a national calamity, not to say scandal; and, if public funds are not available for its conservation, we trust that private zeal and munificence may be relied on to save from destruction so interesting a relic. It certainly could not cost much to convey the building in sections to the mainland, and there, on some suitable spot, to re-erect it as a national tribute to the genius of its great architect." When the present lighthouse was built one of the chief difficulties was in getting the building materials to the spot. They were conveyed from Millbay in small sailing vessels, which often beat about for days before they could effect a landing at the Eddystone rocks, so that each arrival called out the special gratitude of Smeaton.

* * * * *


MESSRS. SCHULZ, KNAUDT & Co., of Essen, who are making an application of corrugated iron in the construction of the interior flues of steam boilers, have devised a new mill for the manufacture of this form of iron plates, and which is represented in the accompanying cut, taken from the Deutsche Industrie Zeitung. The supports of the two accessory cylinders, F F, rest on two slides, G G, which move along the oblique guides, H H. As a consequence of this arrangement, when the cylinders, F F, are caused to approach the cylinder, D, both are raised at the same instant.

When the cylinders, F, occupy the position represented in the engraving by unbroken lines, the flat plate, O, is simply submitted to pressure between the cylinders, D and P, the cylinders, F F, then merely acting as guides. But when, while the plate is being thus flattened between the principal cylinders, the accessory cylinders are caused to rise, the plate is curved as shown by the dotted lines, O' O'. To obtain a uniformity in the position of the two cylinders, F F, the following mechanism is employed: Each cylinder has an axle, to which is affixed a crank, Q, connected by means of a rod, R, with the slide, G. These axles are also provided with toothed sectors, L L, which gear with two screws, L L, whose threads run in opposite directions. These screws are mounted on a shaft, N, which may be revolved by any suitable arrangement.

* * * * *


The small engraving which we reproduce herewith from La Nature is deposited at the Archives at Paris. It is catalogued in the documents relating to Old Marly, 1714, under number 11,339, Vol. 1. The design represents a diversion called the Jeu de la Roulette which was indulged in by the royal family at the sumptuous and magnificent chateau of Mary-le-Roi.

According to Alex. Guillaumot the apparatus consisted of a sort of railway on which the car was moved by manual labor. In the car, which was decorated with the royal colors, are seen seated the ladies and children of the king's household, while the king himself stands in the rear and seems to be directing operations. The remarkable peculiarity to which we would direct the attention of the reader is that this document shows that the car ran on rails very nearly like those used on the railways of the present time, and that a turn-table served for changing the direction to a right angle in order to place the car under the shelter of a small building. The picture which we reproduce, and the authenticity of which is certain, proves then that in the time of Louis XIV. our present railway turn-tables had been thought of and constructed—which is a historic fact worthy of being noted. It is well known that the use of railways in mines is of very ancient date, but we do not believe that there are on record any documents as precise as that of the Jeu de la Roulette as to the existence of turn-tables in former ages.

* * * * *


To the Editor of the Scientific American:

I send you a plate of my new railway signal wire compensator. Here in India signal wires give more trouble, perhaps, than in America or elsewhere, by expansion and contraction. What makes the difficulty more here is the ignorance and indolence of the point and signalmen, who are all natives. There have been numerous collisions, owing to signals falling off by contraction. Many devices and systems have been tried, but none have given the desired result. You will observe the signal wire marked D is entirely separated and independent of the wire, E, leading to lever. On the Great Indian and Peninsula Railway I work one of these compensators, 1,160 yards from signal, which stands on a summit the grade of which is 1 in 150; and on the Nizam State Railway I have one working on a signal 800 yards. This signal had previously given so much trouble that it was decided to do away with it altogether. It stands on top of a high cutting and on a 1,600 foot curve.

I have noted on the compensator fixed at 1,160 yards, 131/4 inches contraction and expansion. The compensator is very simple and not at all likely to get out of order. On new wire, when I fix my compensator, I usually have an adjusting screw on the lead to lever. This I remove when the wire has been stretched to its full tension. I have everything removed from lever, so there can be no meddling or altering. When once the wire is stretched so that no slack remains between lever and trigger, no further adjustment is necessary.


Chief Maintenance Inspector, Permanent Way,

H.H. Nizam State Railway, E. India.

Secunderabad, India, 1881.


The great merits of hydraulic hoists generally as regards safety and readiness of control are too well known to need pointing out here. We may, therefore, at once proceed to introduce to our readers the apparatus of this class illustrated in the above engravings. This is a hoist (Cherry's patent) manufactured by Messrs. Tangye Brothers, of London and Birmingham, and which experience has proved to be a most useful adjunct in warehouses, railway stations, hotels, and the like. Fig. 1 of our engraving shows a perspective view of the hoist, Fig. 2 being a longitudinal section. It will be seen that this apparatus is of very simple construction, the motion of the piston being transmitted directly to the winding-drum shaft by means of a flexible steel rack. Referring to Fig. 2, F is a piston working in the cylinder, G; E is the flexible steel rack connected to the piston, F, and gearing with a toothed wheel, B, which is inclosed in a watertight casing having cover, D, for convenient access. The wheel, B, is keyed on a steel shaft, C, which passes through stuffing-boxes in the casing, and has the winding barrel, A, keyed on it outside the casing. H is a rectangular tube, which guides the free end of the flexible steel rack, E. The hoist is fitted with a stopping and starting valve, by means of which water under pressure from any convenient source of supply may be admitted or exhausted from the cylinder. The action in lifting is as follows: The water pressure forces the piston toward the end of the cylinder. The piston, by means of the flexible steel rack, causes the toothed wheel to revolve. The winding barrel, being keyed on the same shaft as the toothed wheel, also revolves, and winds up the weight by means of the lifting chain. Two special advantages are obtained by this simple method of construction. In the first place, twice the length of stroke can be obtained in the same space as compared with the older types of hydraulic hoist; and, from the directness of the action, the friction is reduced to a minimum. This simple method of construction renders the hoist very compact and easily fixed; and, from the directness with which the power is conveyed from the piston to the winding drum, and the frictionless nature of the mechanism, a smaller piston suffices than in the ordinary hydraulic hoists, and a smaller quantity of water is required to work them.—Iron.

* * * * *


The force with which the shuttle is thrown in an ordinary power loom moving with a certain speed is always considerable, and, as a consequence of the strain exerted on the thread, it is frequently necessary to use a woof stronger than is desirable, in order that it may have sufficient resistance. On another hand, when the woof must be very fine and delicate the fabric is often advantageously woven on a hand loom. In order to facilitate the manufacture of like tissues on the power loom the celebrated Swiss manufacturer, Hanneger, has invented an apparatus in which the shuttle is not thrown, but passed from one side to the other by means of hooks, by a process analogous to weaving silk by hand. A loom built on this principle was shown at work weaving silk at the Paris Exhibition of 1878. This apparatus, represented in the annexed figure, contains some arrangements which are new and interesting. On each side of the woof in the heddle there is a carrier, B. These carriers are provided with hooks, A A', having appendages, a a', which are fitted in the shuttle, O. The latter is of peculiar construction. The upper ends of the hooks have fingers, d d', which holds the shuttle in position as long as the action of the springs, e e', continues. The distance that the shuttle has to travel includes the breadth of the heddle, the length of the shuttle, and about four inches in addition. The motion of the two carriers, which approach each other and recede simultaneously, is effected by the levers, C, D, E, and C', D', E'. The levers, E, E', are actuated by a piece, F, which receives its motion from the main shaft, H, through the intervention of a crank and a connecting rod, G, and makes a little more than a quarter revolution. The levers, E, E', are articulated in such a way that the motion transmitted by them is slackened toward the outer end and quickened toward the middle of the loom. While the carriers, B B', are receiving their alternate backward and forward motion, the shaft, I (which revolves only half as fast as the main shaft), causes a lever, F F', to swing, through the aid of a crank, J, and rod, K. Upon the two carriers, B B', are firmly attached two hooks, M M', which move with them. When the hook, M, approaches the extremity of the lever, F, the latter raises it, pushes against the spring, E, and sets free the shuttle, which, at the same moment, meets the opposite hook, a', and, being caught by it, is carried over to the other side. The same thing happens when the carrier, B', is on its return travel, and the hook, M', mounts the lever, F', which is then raised.

As will be seen from this description, the woof does not undergo the least strain, and may be drawn very gently from the shuttle. Neither does this latter exert any friction on the chain, since it does not move on it as in ordinary looms. In this apparatus, therefore, there may be employed for the chain very delicate threads, which, in other looms, would be injured by the shuttle passing over them. Looms constructed on this plan have for some time been in very successful use in Switzerland.

* * * * *


The process of manufacture is very interesting. The logs are delivered in the mill yard in any suitable lengths as for ordinary lumber. A steam drag saw cuts them into such lengths as may be required by the order in hand; those being cut at the time of our visit were four feet long. After cutting, the logs are placed in a large steam box, 15 feet wide, 22 feet long, and six feet high, built separate from the main building. This box is divided into two compartments. When one is filled entirely full, the doors are closed, and the steam, supplied by the engine in the main building, is turned on. The logs remain in this box from three to four hours, when they are ready for use. This steaming not only removes the bark, but moistens and softens the entire log. From the steam box the log goes to the veneer lathe. It is here raised, grasped at each end by the lathe centers, and firmly held in position, beginning to slowly revolve. Every turn brings it in contact with the knife, which is gauged to a required thickness. As the log revolves the inequalities of its surface of course first come in contact with the keen-edged knife, and disappear in the shape of waste veneer, which is passed to the engine room to be used as fuel. Soon, however, the unevenness of the log disappears, and the now perfect veneer comes from beneath the knife in a continuous sheet, and is received and passed on to the cutting table. This continues until the log is reduced to about a seven inch core, which is useless for the purpose. The veneer as it comes rolling off the log presents all the diversity of colors and the beautiful grain and rich marking that have perhaps for centuries been growing to perfection in the silent depths of our great forests.

From the lathe, the veneer is passed to the cutting table, where it is cut to lengths and widths as desired. It is then conveyed to the second story, where it is placed in large dry rooms, air tight, except as the air reaches them through the proper channels. The veneer is here placed in crates, each piece separate and standing on edge. The hot air is then turned on. This comes from the sheet iron furnace attached to the boiler in the engine room below, and is conveyed through large pipes regulated by dampers for putting on or taking off the heat. There is also a blower attached which keeps the hot air in the dry rooms in constant motion, the air as it cools passing off through an escape pipe in the roof, while the freshly heated air takes its place from below. These rooms are also provided with a net-work of hot air pipes near the floor. The temperature is kept at about 165 deg., and so rapid is the drying process that in the short space of four hours the green log from the steam box is shaved, cut, dried, packed, and ready for shipment.

After leaving the dry rooms it is assorted, counted, and put up in packages of one hundred each, and tied with cords like lath, when it is ready for shipment. Bird's-eye maple veneer is much more valuable and requires more care than almost any other, and this is packed in cases instead of tied in bundles. The drying process is usually a slow one, and conducted in open sheds simply exposed to the air. Mr. Densmore's invention will revolutionize this process, and already gives his mill a most decided advantage.

The mill will cut about 30,000 feet of veneer in a day, and this cut can be increased to 40,000 if necessary. Mr. Densmore has already received several large orders, and the rapidly increasing demand for this material is likely to give the mill all the work it can do. The timber used is principally curled and bird's-eye maple, beech, birch, cherry, ash, and oak. These all grow in abundance in this vicinity, and the beautifully marked and grained timber of our forests will find fitting places in the ornamental uses these veneers will be put to.

* * * * *


The constituent parts of leather seem to be but little understood. The opinions of those engaged in the manufacture of leather differ widely on this question.

Some think that tannin assimilates itself with the hide and becomes fixed there by reason of a special affinity. Others regard the hide as a chemical combination of gelatine and tannin. We know that the hide contains some matters which are not ineradicable, but only need a slight washing to detach them.

We deem it advisable, in order to examine the hide properly so-called, to dispense with those eradicable substances which may be regarded, to some extent, as not germain to it, and confine our attention to the raw stock, freed from these imperfections.

It is well known that a large number of vegetable substances are employed as tanning agents. Our researches have been directed to leather tanned by means of the most important of these agents.

Many questions present themselves in the course of such an examination. Among others, that most important one, from a practical point of view, of the weight the tanning agent gives to the hide, that is to say, the result in leather of weight given to the raw material. The degree of tannage is also to be considered; the length of time during which the tanning agent is to be left with the hide; in short, the influence upon the leather of the substances used in its production. That is why we have made the completest possible analysis of different leathers.

Besides ordinary oak bark there are used at present very different substances, such as laurel, chestnut, hemlock, quebracho and pine bark, sumac, etc.

Water is an element that exists in all hides, and it is necessary to take it into consideration in the analysis. It is present in perceptible quantity even in dry hides. This water cannot be entirely eradicated without injuring the leather, which will lose in suppleness and appearance. Water should then be considered as one of the elements of leather, but it must be understood that if it exceeds certain limits, say 12 to 14 per cent., it becomes useless and even injurious. Moreover, if there is any excess over the normal quantity, it becomes deceptive and dishonest, as in such a case one sells for hides that which is nothing but water. Supposing that a hide, instead of only 14 per cent., contained 18 per cent. of water, it is evident that in buying 100 pounds of such a hide one would pay for four pounds of water at the rate for which he purchased the hide.

There are, also, some matters soluble in air, which are formed to a large extent from fat arising as much from the hide as from tanning substances. The air dissolves at the same time a certain amount of organic acid and resinous products which the hide has absorbed. After treating with air, alcohol is used, which dissolves principally the coloring matters, tannin which has not become assimilated, bodies analogous to resin, and some extractive substances.

That which remains after these methods have been pursued ought to be regarded as the hide proper, that is to say, as the animal tissue saturated with tannic acid. In this remainder one is able to estimate with close precision that which belongs to the hide. The hide being an elementary tissue of unchangeable form, it is easy, in determining the elementary portion, to find the amount of real hide remaining in the product. With these elements one can arrive at a solution of some of the questions we are discussing.

We give below, according to this method, a table showing the composition of the different leathers exhibited at the Paris Exposition of 1878. They are the results of careful research, and we have based our work upon them:

Matter Soluble Fixed in Air Tannin Matter Solu- ble in Alcohol Moisture Gelatine + + + + + Steer hide, hemlock tanned (heavy leather) 10.95 4.15 19.77 39.1 26.03 Sheepskins, sumac " (Hungarian) 10.8 10.3 12.1 40.3 26.5 Finished calf, pine bark tanned (Hungarian) 11.2 1.7 7.4 41.6 38.1 Steer hide, quebracho tanned (heavy leather) 11.7 1.6 11.2 43.1 32.4 " " chestnut " " " 13.5 0.29 1.99 45.46 38.76 Finished calfskins, oak tanned (Chateau Renault) 12.4 0.33 3.59 46.74 36.94 Steer hide, laurel tanned (heavy leather) 12.4 1.05 7.95 47.47 31.13 " " oak tanned after three years in the vats (heavy leather) 11.45 0.37 3.31 49.85 35.02

The following table shows the amount of leather produced by different tannages of 100 pounds of hides:

Pounds. Hemlock 255.7 Sumac 248.1 Pine 240.3 Quebracho 232 Chestnut 219.9 Oak 213.9 Laurel 210.6 Oak, lasting three years 206

It is important to mention here the large proportion of resinous matter hemlock-tanned leather contains. This resin is a very beautiful red substance, which communicates its peculiar color to the leather.

We should mention here that in these calculations we assume that the hide is in a perfectly dry state, water being a changeable element which does not allow one to arrive at a precise result.

These figures show the enormous differences resulting from diverse methods of tanning. Hemlock, which threatens to flood the markets of Europe, distinguishes itself above all. The high results attributable to the large proportion of resin that the hide assimilates, explain in part the lowness of its price, which renders it so formidable a competitor. One is also surprised at the large return from sumac-tanned hides when it is remembered in how short a time the tanning was accomplished, which, in the present case, only occupied half an hour.

The figures show us that the greatest return is obtained by means of those tanning substances which are richest in resin. In short, hemlock, sumac, and pine, which give the greatest return, are those containing the largest amount of resin. Thus, hemlock bark gives 10.58 per cent. of it, and sumac leaves 22.7 per cent., besides the tannin which they contain. We know also that pine bark is very rich in resin. There is, then, advantage to the tanner, so far as the question of result is concerned, in using these materials. There is, however, another side to the question, as the leather thus surcharged with resin is of inferior quality, generally has a lower commercial value, and is often of a color but little esteemed.

The percentage of tannin absorbed by the different methods of tannages appears in the following table:

Hemlock 64.2 Sumac 61.4 Pine 90.8 Quebracho 75.3 Chestnut 85.2 Oak 76.9 Laurel 64.8 Oak, three years in the vat 70.2

The subjoined is a statement of the gelatine and tannin in leather of different tannages, and also shows the amount of azote or elementary matter contained in each:

Gelatine. Tannin. Azote. Hemlock 60.4 39.6 10.88 Sumac 60.4 39.6 11 Pine bark 52.5 47.5 9.56 Quebracho 57.1 42.9 10.4 Chestnut 53.97 46.03 9.79 Oak 55.87 44.13 10.24 Laurel 60.4 39.6 10.94 Oak, 3 years in vat 58.75 41.25 10.65

It is not pretended that these figures are absolutely correct, as they often vary in certain limits even for similar products. They form, however, a fair basis of calculation.

As to whether leather is a veritable combination, it seems to us that this question should be answered affirmatively. In fact, the resistance of leather properly so-called to neutral dissolvents, argues in favor of this opinion.

Furthermore, the perceptible proportion of tannin remaining absorbed by a like amount of hide is another powerful argument. It remains for us to say here that the differences observable in the quantity of fixed tannin ought to arise chiefly from the different natures of these tannins, which have properties differing as do those of one plant from another, and which really have but one property in common, that of assimilating themselves with animal tissues and rendering them imputrescible.

In conclusion, these researches determine the functions of resinous matters which frequently accompany tannin; they show a very simple method for estimating the results of one's work, as well as the degree of tannage.—Muntz & Schoen, in La Halle aux Cuirs.—Shoe & Leather Reporter.

* * * * *


The new High School for Girls at Oxford, built by Mr. T.G. Jackson, for the Girls' Public Day School Company, Limited, was opened September 23, 1880, when the school was transferred from the temporary premises it had occupied in St. Giles's. The new building stands in St. Giles's road, East, to the north of Oxford, on land leased from University College, and contains accommodation for about 270 pupils in 11 class-rooms, some of which communicate by sliding doors, besides a residence for the mistress, an office and waiting-room, a room for the teachers, cloak rooms, kitchens, and other necessary offices, and a large hall, 50 ft. by 30 ft., for the general assembling of the school together and for use on speech-days and other public occasions. The principal front faces St. Giles's road, and is shown in the accompanying illustration. The great hall occupies the whole of the upper story of the front building, with the office and cloak-rooms below it, and the principal entrance in the center. The class-rooms are all placed in the rear of the building, to secure quiet, and open on each floor into a corridor surrounding the main staircase which occupies the center of the building. The walls are built of Headington stone in rubble work, with dressings of brick, between which the walling is plastered, and the front is enriched with cornices and pilasters, and a hood over the entrance door, all of terra cotta. The hinder part of the building is kept studiously simple and plain on account of expense. Behind the school is a large playground, which is provided with an asphalt tennis-court, and is picturesquely shaded with apple-trees, the survivors of an old orchard. The builders were Messrs. Symm & Co., of Oxford; and the terra cotta was made by Messrs. Doulton, of Lambeth. Mr. E. Long was clerk of works.—Building News.

* * * * *


No advance in any industry has been more sure than in that of pottery and chinaware, under the American tariff, or more rapid in the past four or five years. It took Europe three centuries and the jealous precautions of royal pottery proprietors to build up the great protectorates that made their distinctive trade-marks of such value. The earlier lusters of the Italian faience were guild privacies or individual secrets, as was almost all the craft of the earlier art-worker. Royal patronage in England was equivalent to a protective tariff for Josiah Wedgwood; and everywhere the importance of guarding the china nurseries has been understood. We have in this country broadcast and in abundance every type of material needed for the finest china ware, and for the finer glasses and enamels. The royal manufactories in Europe were hard put to it sometimes for want of discovering kaolin beds in their dominions, but the resources of the United States in these particulars needed something more than to be brought to light. The manipulation and washing of the clays to render them immediately useful to the potteries depends entirely upon the reliance of these establishments upon home materials. The Missouri potteries have their supplies near home, but these supplies must be put upon the market for other cities in condition to compete with the clays of Europe. There are fine kaolin beds in Chester and Delaware counties in this State; there are clay beds in New Jersey, and the recent needs of Ohio potteries have uncovered fine clay in that State. This shows that not only for the manufacture itself, but for the development of material here, everything depends upon the stimulus that protection gives.

Ohio china and Cincinnati pottery are known all over the country. The Chelsea Works, near Boston, however, are as distinguished for their clays and faience, and for lustrous tiles especially (to be used in household decoration) can rival the rich show that the Doulton ware made at the Centennial. Other New England potteries are eminent for terra cotta and granite wares. On Long Island and in New York city there are porcelain and terra cotta factories of established fame, and the first porcelain work to succeed in home markets was made at the still busy factories of Greenpoint. New Jersey potteries take the broad ground of the useful, first of all, in their manufacture of excellent granite and cream-colored ware for domestic use, but every year turn out more beautiful forms and more artistic work. The Etruria Company especially have succeeded in giving the warm flesh tints to the "Parian" for busts and statuettes, now to be seen in many shop windows. These goods ought always to be labeled and known as American—it adds to their value with any true connoisseur. Some of these establishments, more than others, have the enterprise to experiment in native clays, for which the whole trade owes their acknowledgments.

The demand all through the country by skillful decorators for the pottery forms to work upon, points to still greater extensions in this business of making our own china, and to the employment and good pay of more thousands than are now employed in it. A collection of American china, terra cotta, etc., begun at this time and added to from year to year, will soon be a most interesting cabinet. Both in the eastern and western manufactories ingenious workers are rediscovering and experimenting in pastes and glazes and colors, simply because there is a large demand for all such, and they can be supplied at prices within the reach of most buyers. It needs only to point out this flourishing state of things, through the "let-alone" principle, which protection insures to this industry, to exhibit the threatened damage of the attempt, under cover of earthenware duties, to get a little free trade through at this session.—Philadelphia Public Ledger.

* * * * *


Mr. Warnerke's New Discovery.—Very happily for our art, we are at the present moment entering upon a stage of improvement which shows that photography is advancing with vast strides toward a position that has the possibility of a marvelous future. In England, especially, great advances are being made. The recent experiments of our accomplished colleague, Mr. Warnerke, on gelatine rendered insoluble by light, after it has been sensitized by silver bromide and developed by pyrogallic acid, have revealed to us a number of new facts whose valuable results it is impossible at present to foretell. It seems, however, certain that we shall thus be able to accomplish very nearly the same effects as those obtained by bichromatized gelatine, but with the additional advantage of a much greater rapidity in all the operations. In my own experiments with the new process of phototypie, I hit upon the plan of plunging the carbon image, from which all soluble gelatine had been removed, into a bath of pyrogallic acid, in order to still further render impermeable the substance forming the printing surface. I also conceived the idea of afterward saturating this carbon image with a solution of nitrate of silver, and of subsequently treating it with pyrogallic acid, in order to still further render impermeable the substance forming the printing surface. But the process described by Mr. Warnerke is quite different; by means of it we shall be able to fix the image taken in the camera, in the same way as we develop carbon pictures, and afterward to employ them in any manner that may be desirable. Thus the positive process of carbon printing would be modified in such a manner that the mixtures containing the permanent pigment should be sensitized with silver bromide in place of potassium bichromate. In this way impressions could be very rapidly taken of positive proofs, and enlargements made, which might be developed in hot water, just as in the ordinary carbon process, and at least we should have permanent images. Mr. Warnerke's highly interesting experiments will no doubt open the way to many valuable applications, and will realize a marked progress in the art of photography.

Method for Converting Negatives Directly into Positives.—Captain Bing, who is employed in the topographic studios of the Ministry of War, has devised a process for the direct conversion of negatives into positives. The idea is not a new one; but several experimenters, and notably the late Thomas Sutton, have pointed out the means of effecting this conversion; it has never, however, so far as I know, been introduced into actual practice, as is now the case. The process which I am about to describe is now worked in the studios of the Topographic Service. The negative image is developed in the ordinary way, but the development is carried much further than if it were to be used as an ordinary negative. After developing and thoroughly washing, the negative is placed on a black cloth with the collodion side downward, and exposed to diffuse light for a time, which varies from a few seconds to two or three minutes, according to the intensity of the plate. Afterward the conversion is effected by moistening the plate afresh, and then plunging it into a bath which is thus composed:

Water 700 cub. cents. Potassium bichromate 30 grams. Pure nitric acid 300 cub. cents.

In a few minutes this solution will dissolve all the reduced silver forming the negative; the negative image is therefore entirely destroyed; but it has served to impress on the sensitive film beneath it a positive image, which is still in a latent condition. It must, therefore, be developed, and to do this, the film is treated with a solution of—

Water 1,000 grams Pyrogallic acid 25 " Citric acid 20 " Alcohol of 36 deg. 50 cub. cents.

The process is carried on exactly as if developing an ordinary negative; but the action of the developer is stopped at the precise moment when the positive has acquired intensity sufficient for the purpose for which it is to be used. Fixing, varnishing, etc., are then carried on the usual way. The great advantage of this process consists in the fact of its rendering positives of much greater delicacy than those that are taken by contact; and, on the other hand, by means of it we are able to avoid two distinct operations, when for certain kinds of work we require positive plates where a negative would be of no service. M. V. Rau, the assistant who has carried out this process under the direction of Captain Bing, has described it in a work which has just been published by M. Gauthier-Villars.

Experiments of Captain Bing on the Sensitiveness of Coal Oil.—The same Captain of Engineers has undertaken a series of very interesting experiments on the sensitiveness to light of one or two substances to which bitumen probably owes its sensitiveness, but which, contrary to what takes place with bitumen, are capable of rendering very beautiful half tones, both on polished zinc and on albumenized paper. These sensitive substances are extracted by dissolving marine glue or coal-tar in benzine. By exposure to light, both marine-glue and coal-tar turn of a sepia color, and, in a printing-frame, they render a visible image, which is not the case with bitumen; their solvents are in the order of their energy; chloroform, ether, benzine, turpentine, petroleum spirit, and alcohol. Of these solvents, benzine is the best adapted for reducing the substances to a fluid state, so as to enable them to flow over the zinc. The images obtained, which are permanent, and which are very much like those of the Daguerreotype, are fixed by means of the turpentine and petroleum spirit. They are washed with water, and then carefully dried. It is possible to obtain prints with half-tones in fatty ink by means of plates of zinc coated with marine-glue. Some attempts in this direction were shown to me, which promised very well in this respect. We are, therefore, in the right road, not only for economically producing permanent prints on paper, but also for making zinc plates in which the phototype film of bichromatized gelatine is replaced by a solution of marine-glue and benzine. The substance known in commerce under the name of pitch or coal-tar will produce the same results.

Bitumen Plates.—A new method of making bitumen plates by contact has also been introduced into the topographical studios. The plan, or the original drawing, is placed against a glass plate, coated with a mixture of bitumen and of marine-glue dissolved in benzine. The marine-glue gives the bitumen greater pliancy, and prevents it from scaling off when rubbed, particularly when the plate is retouched with a dry point. These bitumen plates are so thoroughly opaque to the penetration of the actinic rays, that the printing-frame may be left for any time in full sunlight without any fear of fog being produced on the zinc plate from which the prints are to be taken.

Method for Topographic Engraving by Commandant de la Noe.—Before leaving the interesting studios of which I have been speaking, I ought to mention a very ingenious application which has been made of a process called topogravure, invented by Commandant de la Noe, who is the director of this important department. A plate of polished zinc is coated with bitumen in the usual way, and then exposed directly to the light under an original drawing, or even under a printed plan. So soon as the light has sufficiently acted, which may be seen by means of photometric bands equally transparent at the plate, all the bitumen not acted upon is dissolved. As it is a positive which has acted as matrix, the uncovered zinc indicates the design, and the ground remains coated with insoluble bitumen. The plate is then etched with a weak solution of nitric acid in water, and the lines of the design are thus slightly engraved; the surface is then re-coated with another layer of bitumen, which fills up all the hollows, and is then rubbed down with charcoal. All the surface is thus cleaned off, and the only bitumen which remains is that in the lines, which, though not deep, are sufficiently so to protect the substance from the rubbing of the charcoal. When this is done we have an engraved plate which can be printed from, like a lithographic stone; it is gummed and wetted in the usual way, and it gives prints of much greater delicacy and purity than those taken directly from the bitumen. The ink is retained by the slight projection of the surface beyond the line, so that it cannot spread, and a kind of copper plate engraving is taken by lithographic printing. Besides, in arriving at this result, there is the advantage of being able to use directly the original plans and drawings, without being obliged to have recourse to a plate taken in the camera; the latter is indispensable for printing in the usual way on bitumen where the impression on the sensitive film is obtained by means of a negative. It will be seen that this process is exceedingly ingenious, and not only is its application very easy, but all its details are essentially practical.

Succinate of Iron Developer.—I have received a letter from M. Borlinetto, in which he states that he has been induced by the analogy which exists between oxalic and succinic acids to try whether succinate of iron can be substituted for oxalate of iron as a developer. To prove this he prepared some proto-succinate of iron from the succinate of potassium and proto-sulphate of iron, following the method given by Dr. Eder for the preparation of his ferrous oxalate developer. He carried out the development in the same way as is done by the oxalate, and he found that the succinate of iron is even more energetic than the oxalate. The plate develops regularly with much delicacy, and gives a peculiar tone. It is necessary to take some fresh solution at every operation, on account of the proto-succinate of iron being rapidly converted into per-succinate by contact with the air.

Method of Making Friable Hydro-Cellulose.—At the meeting of the Photographic Society of France, M. Girard showed his method of preparing cellulose in a state of powder, specially adapted for the production of pyroxyline for making collodion. Carded cotton-wool is placed in water, acidulated with 3 per cent. of sulphuric or nitric acid, and is left there from five to fifteen seconds; it is then taken out and laid on a linen cloth, which is then wrung so as to extract most of the liquid. In this condition there still remains from 30 to 40 per cent. of acidulated water; the cotton is divided into parcels and allowed to dry in the open air until it feels dry to the touch, though in this condition it still contains 20 per cent. of water. It is next inclosed in a covered jar, which is heated to a temperature of 65 deg. C.; the desiccation therefore takes place in the closed space, and the conversion of the material is completed in about two or three hours. In this way a very perfect hydro-cellulose is obtained, and in the best form for producing excellent pyroxyline.—Corresp. Photo Mews.

* * * * *


Two new processes for taking photo tracings in black and color have recently been published—"Nigrography" and "Anthrakotype"—both of which represent a real advance in photographic art. By these two processes we are enabled for the first time to accomplish the rapid production of positive copies in black of plans and other line drawings. Each of these new methods has its own sphere of action; both, therefore, should deserve equally descriptive notices.

For large plans, drawn with lines of even breadth, and showing no gradated lines, or such as shade into gray, the process styled "nigrography," invented by Itterbeim, of Vienna, and patented both in Germany and Austria, will be found best adapted. The base of this process is a solution of gum, with which large sheets of paper can be more readily coated than with one of gelatine; it is, therefore, very suitable for the preparation of tracings of the largest size. The paper used must be the best drawing paper, thoroughly sized, and on this the solution, consisting of 25 parts of gum arabic dissolved in 100 parts of water, to which are added 7 parts of potassium bichromate and I part of alcohol, is spread with a broad, flat brush. It is then dried, and if placed in a cool, dark place will keep good for a long time. When used, it is placed under the plan to be reproduced, and exposed to diffused light for from five to ten minutes—that is to say, to about 14 deg. of Vogel's photometer; it is then removed and placed for twenty minutes in cold water, in order to wash out all the chromated gum which has not been affected by light. By pressing between two sheets of blotting-paper the water is then got rid of, and if the exposure has been correctly judged the drawing will appear as dull lines on a shiny ground. After the paper has been completely dried it is ready for the black color. This consists of 5 parts of shellac, 100 parts of alcohol, and 15 parts of finely-powdered vine-black. A sponge is used to distribute the color over the paper, and the latter is then laid in a 2 to 3 per cent. bath of sulphuric acid, where it must remain until the black color can be easily removed by means of a stiff brush. All the lines of the drawing will then appear in black on a white ground. These nigrographic tracings are very fine, but they only appear in complete perfection when the original drawings are perfectly opaque. Half-tone lines, or the marks of a red pencil on the original, are not reproduced in the nigrographic copy.

"Anthrakotype" is a kind of dusting-on process. It was invented by Dr. Sobacchi, in the year 1879, and has been lately more fully described by Captain Pizzighelli. This process—called also "Photanthrakography"—is founded on the property of chromated gelatine which has not been acted on by light to swell up in lukewarm water, and to become tacky, so that in this condition it can retain powdered color which had been dusted on it. Wherever, however, the chromated gelatine has been acted on by light, the surface becomes horny, undergoes no change in warm water, and loses all sign of tackiness. In this process absolute opacity in the lines of the original drawing is by no means necessary, for it reproduces gray, half-tone lines just as well as it does black ones. Pencil drawings can also be copied, and in this lies one great advantage of the process over other photo-tracing methods, for, to a certain extent, even half-tones can be produced.

For the paper for anthrakotype an ordinary strong, well-sized paper must be selected. This must be coated with a gelatine solution (gelatine 1, water 30 parts), either by floating the paper on the solution, or by flowing the solution over the paper. In the latter case the paper is softened by soaking in water, is then pressed on to a glass plate placed in a horizontal position, the edges are turned up, and the gelatine solution is poured into the trough thus formed. To sensitize the paper, it is dipped for a couple of minutes in a solution of potassium bichromate (1 in 25), then taken out and dried in the dark.

The paper is now placed beneath the drawing in a copying-frame, and exposed for several minutes to the light; it is afterward laid in cold water in order to remove all excess of chromate. A copy of the original drawing now exists in relief on the swollen gelatine, and, in order to make this relief sticky, the paper is next dipped for a short time in water, at a temperature of about 28 deg. or 30 deg. C. It is then laid on a smooth glass plate, superficially dried by means of blotting-paper, and lamp-black or soot evenly dusted on over the whole surface by means of a fine sieve. Although lamp-black is so inexpensive and so easily obtained, as material it answers the present purpose better than any other black coloring substance. If now the color be evenly distributed with a broad brush, the whole surface of the paper will appear to be thoroughly black. In order to fix the color on the tacky parts of the gelatine, the paper must next be dried by artificial heat—say, by placing it near a stove—and this has the advantage of still further increasing the stickiness of the gelatine in the parts which have not been acted upon by light, so that the coloring matter adheres even more firmly to the gelatine. When the paper is thoroughly dry, place it in water, and let it be played on by a strong jet; this removes all the color from the parts which have been exposed to the light, and so develops the picture. By a little gentle friction with a wet sponge, the development will be materially promoted.

A highly interesting peculiarity of this anthrakotype process is the fact that a copy, though it may have been incorrectly exposed, can still be saved. For instance, if the image does not seem to be vigorous enough, it can be intensified in the simplest way; it is only necessary to soak the paper afresh, then dust on more color, etc.; in short, repeat the developing process as above described. In difficult cases the dusting-on may be repeated five or six times, till at last the desired intensity is obtained.

By this process, therefore, we get a positive copy of a positive original in black lines on a white ground. Of course, any other coloring material in a state of powder may be used instead of soot, and then a colored drawing on a white ground is obtained. Very pretty variations of the process may be made by using gold or silver paper, and dusting-on with different colors; or a picture may be taken in gold bronze powder on a white ground. In this way colored drawings may be taken on a gold or a silver ground, and very bright photo tracings will be the result. Some examples of this kind, that have been sent us from Vienna, are exceedingly beautiful.

Summing up the respective advantages of the two processes we have above described, we may say that "nigrography" is best adapted for copying drawings of a large size; the copies can with difficulty be distinguished from good autographs, and they do not possess the bad quality of gelatine papers—the tendency to roll up and crack. Drawings, however, which have shadow or gradated lines cannot be well produced by this process; in such cases it is better to adopt "anthrakotype," with which good results will be obtained.—Photographic News.

* * * * *


The researches of M. Gaston Plante on the polarization of voltameters led to his invention of the secondary cell, composed of two strips of lead immersed in acidulated water. These cells accumulate, and, so to speak, store up the electricity passed into them from some outside generator. When the two electrodes are connected with any source of electricity the surfaces of the two strips of lead undergo certain modifications. Thus, the positive pole retains oxygen and becomes covered with a thin coating of peroxide of lead, while the negative pole becomes reduced to a clean metallic state.

Now, if the secondary cell is separated from the primary one, we have a veritable voltaic battery, for the symmetry of the poles is upset, and one is ready to give up oxygen and the other eager to receive it. When the poles are connected, an intense electric current is obtained, but it is of short duration. Such a cell, having half a square meter of surface, can store up enough electricity to keep a platinum wire 1 millim. in diameter and 8 centims. long, red-hot for ten minutes. M. Plante has succeeded in increasing the duration of the current by alternately charging and discharging the cell, so as alternately to form layers of reduced metal and peroxide of lead on the surface of the strip. It was seen that this cell would afford an excellent means for the conveyance of electricity from place to place, the great drawback, however, being that the storing capacity was not sufficient as compared with the weight and size of the cell. This difficulty has now been overcome by M. Faure; the cell as he has improved it is made in the following manner:

The two strips of lead are separately covered with minium or some other insoluble oxide of lead, then covered with an envelope of felt, firmly attached by rivets of lead. These two electrodes are then placed near each other in water acidulated with sulphuric acid, as in the Plante cell. The cell is then attached to a battery so as to allow a current of electricity to pass through it, and the minium is thereby reduced to metallic spongy lead on the negative pole, and oxidized to peroxide of lead on the positive pole; when the cell is discharged the reduced lead becomes oxidized, and the peroxide of lead is reduced until the cell becomes inert.

The improvement consists, as will be seen, in substituting for strips of lead masses of spongy lead; for, in the Plante cell, the action is restricted to the surface, while in Faure's modification the action is almost unlimited. A battery composed of Faure's cells, and weighing 150 lb., is capable of storing up a quantity of electricity equivalent to one horsepower during one hour, and calculations based on facts in thermal chemistry show that this weight could be greatly decreased. A battery of 24 cells, each weighing 14 lb., will keep a strip of platinum five-eighths of an inch wide, one-thirty-second of an inch thick, and 9 ft. 10 in. long, red-hot for a long time.

The loss resulting from the charging and discharging of this battery is not great; for example, if a certain quantity of energy is expended in charging the cells, 80 per cent. of that energy can be reproduced by the electricity resulting from the discharge of the cells; moreover, the battery can be carried from one place to another without injury. A battery was lately charged in Paris, then taken to Brussels, where it was used the next day without recharging. The cost is also said to be very low. A quantity of electricity equal to one horse power during an hour can be produced, stored, and delivered at any distance within 3 miles of the works for 11/2d. Therefore these batteries may become useful in producing the electric light in private houses. A 1,250 horsepower engine, working dynamo-machines giving a continuous current, will in one hour produce 1,000 horse-power of effective electricity, that is to say 80 per cent. of the initial force. The cost of the machines, establishment, and construction will not be more than L40,000, and the quantity of coal burnt will be 2 lb. per hour per effective horse-power, which will cost (say) 1/2d. The apparatus necessary to store up the force of 1,000 horses for twenty-four hours will cost L48,000, and will weigh 1,500 tons. This price and these weights may become much less after a time. The expense for wages and repairs will be less than 1/4d. per hour per horse-power, which would be L24 a day, or L8,800 a year; thus the total cost of one horse-power for an hour stored up at the works is 3/4d. Allowing that the carriage will cost as much as the production and storing, we have what is stated above, viz., that the total cost within 3 miles of the works is 11/2d. per horse-power per hour. This quantity of electricity will produce a light, according to the amount of division, equivalent to from 5 to 30 gas burners, which is much cheaper than gas.—Chemical News.

* * * * *


[Footnote: Read before the State Normal Institute at Winona, Minnesota, April 28, 1881, by Clarence M. Boutelle, Professor of Mathematics and Physical Science in the State Normal School.]

Very little, perhaps, which is new can be said regarding the teaching of physical science by the experimental method. Special schools for scientific education, with large and costly laboratories, are by no means few nor poorly attended; scientific books and periodicals are widely read; scientific lectures are popular. But, while in many schools of advanced grade, science is taught in a scientific way, in many others the work is confined to the mere study of books, and in only a few of our common district schools is it taught at all.

I shall advocate, and I believe with good reason, the use of apparatus and experiments to supplement the knowledge gained from books in schools where books are used, the giving of lessons to younger children who do not use books, and the giving of these lessons to some extent in all our schools. And the facts which I have gathered together regarding the teaching of science will be used with all these ends in view.

Physics—using the term in its broadest sense—has been defined as the science which has for its object the study of the material world, the phenomena which it presents to us, the laws which govern (or account for) these phenomena, and the applications which can be made of either classes of related phenomena, or of laws, to the wants of man. Thus broadly defined, physics would be one of two great subjects covering the whole domain of knowledge. The entire world of matter, as distinguished from the world of mind, would be presented to us in a comprehensive study of physics.

I shall consider in this discussion only a limited part of this great subject. Phenomena modified by the action of the vital force, either in plants or in animals, will be excluded; I shall not, therefore, consider such subjects as botany or zooelogy. Geology and related branches will also be omitted by restricting our study to phenomena which take place in short, definite, measurable periods of time. And lastly, those subjects in which, as in astronomy, the phenomena take place beyond the control of student and teacher, and in which their repetition at pleasure is impossible, will not be considered. Natural philosophy, or physics, as this term is generally used, and chemistry, will, therefore, be the subjects which we will consider as sources from which to draw matter for lessons for the children in our schools.

The child's mind has the receptive side, the sensibility, the most prominent. His senses are alert. He handles and examines objects about him. He sees more, and he learns more from the seeing, than he will in later years unless his perceptive powers are definitely trained and observation made a habit. His judgment and his will are weak. He reasons imperfectly. He chooses without appropriate motives. He needs the building up and development given by educational training. Nature points out the method.

Sensibility being the characteristic of his mind, we must appeal to him through his senses. We must use the concrete; through it we must act upon his weak will and immature judgment. From his natural curiosity we must develop attention. His naturally strong perceptive powers must be made yet stronger; they must be led in proper directions and fixed upon appropriate objects. He must be led to appreciate the relation between cause and effects—to associate together related facts—and to state what he knows in a definite, clear, and forcible manner.

Object lessons, conversational lessons, lessons on animals, lessons based on pictures and other devices, have been used to meet this demand of the child's mental make up. Good in many respects, and vastly better than mere book work, they have faults which I shall point out in connection with the corresponding advantages of easy lessons in the elements of science. I shall not quibble over definitions. Object lessons may, perhaps, properly be said to include lessons such as it seems to me should be given—lessons drawn from natural philosophy or chemistry—but I use the term here in the sense in which it is often used, as meaning lessons based upon some object. A thimble, a knife, a watch, for instance, each of these being a favorite with a certain class of object teachers, may be taken.

The objections are:

1. Little new knowledge can be given which is simple and appropriate. Most children already know the names of such objects as are chosen, the names of the most prominent parts, the materials of which they are composed and their uses. Much that is often given should be omitted altogether if we fairly regard the economy of the child's time and mental strength. It doesn't pay to teach children that which isn't worth remembering, and which we don't care to have them remember.

1  2     Next Part
Home - Random Browse