Steam Steel and Electricity
by James W. Steele
1  2  3  4     Next Part
Home - Random Browse






What Steam is.—Steam in Nature.—The Engine in its earlier forms.—Gradual explosion.—The Hero engine.—The Temple-door machine.—Ideas of the Middle Ages.—Beginnings of the modern engine.—Branca's engine.—Savery's engine.—The Papin engine using cylinder and piston.—Watt's improvements upon the Newcomen idea.—The crank movement.—The first use of steam expansively.—The "Governor."—First engine by an American Inventor.—Its effect upon progress in the United States.—Simplicity and cheapness of the modern engine.—Actual construction of the modern engine.—Valves, piston, etc., with diagrams.


The various "Ages" in civilization.—Ancient knowledge of the metals.—The invention and use of Bronze.—What Steel is.—The "Lost Arts."—Metallurgy and chemistry.—Oriental Steel.—Modern definition of Steel.—Invention of Cast Steel.—First iron-ore discoveries in America.—First American Iron-works.—Early methods without steam.—First American casting.—Effect of iron industry upon independence.—Water-power.—The trip-hammer.—The steam-hammer of Nasmyth.—Machine-tools and their effects.—First rolling-mill.—Product of the iron industry in 1840-50.—The modern nail, and how it came.—Effect of iron upon architecture.—The "Sky-Scraper."—Gas as fuel in iron manufactures.—The Steel of the present.—The invention of Kelley.—The Bessemer process.—The "Converter."—Present product of Steel.—The Steel-mill.


The oldest and the youngest of the sciences.—Origin of the name.—Ancient ideas of Electricity.—Later experiments.—Crude notions and wrong conclusions.—First Electric Machine.—Frictional Electricity.—The Leyden Jar.—Extreme ideas and Fakerism.—Franklin, his new ideas and their reception.—Franklin's Kite.—The Man Franklin.—Experiments after Franklin, leading to our present modern uses.—Galvani and his discovery.—Volta, and the first "Battery."—How a battery acts.—The laws of Electricity, and how they were discovered.—Induction, and its discoverer.—The line at which modern Electricity begins.—Magnetism and Electricity.—The Electro-Magnet.—The Molecular theory.—Faraday, and his Law of Magnetic Force.


CHAPTER I. The Four great qualities of Electricity which make its modern uses possible.—The universal wire.—Conductors and non conductors.—Electricity an exception in the ordinary Laws of Nature.—A dual nature: "Positive" and "Negative."—All modern uses come under the law of Induction.—Some of the laws of this induction.—Magnets and Magnetism.—Relationship between the two.—Magnetic "poles."—Practical explanation of the action of induction.—The Induction Coil.—Dynamic and Static Electricity.—The Electric Telegraph.—First attempts.—Morse, and his beginnings.—The first Telegraph Line.—Vail, and the invention of the dot-and-dash alphabet.—The old instruments and the new.—The final simplicity of the telegraph.

CHAPTER II. The Ocean Cable.—Differences between land lines and cables.—The story of the first cable.—Field and his final success.—The Telephone.—Early attempts.—Description of Bell's invention.—The Telautograph.—Early attempts and the idea upon which they were based.—Description of Gray's invention.—How a Telautograph may be made mechanically.

CHAPTER III. The Electric Light.—Causes of heat and light in the conductor of a current.—The first Electric Light.—The Arc Light, and how constructed.—The Incandescent.—The Dynamo.—Date of the invention.—Successive steps.—Faraday the discoverer of its principle.—Pix's machine.—Pacinatti.—Wilde.—Siemens' and Wheatstone.—The Motor.—How the Dynamo and Motor came to be coupled.—Review of first attempts.—Kidder's battery.—Page's machine.—Electric Railroads.—Electrolysis.—General facts.—Electrical Measurements.—"Death Current."—Instruments of Measurement.—Electricity as an Industry.—Medical Electricity.—Incomplete possibilities.—What the "Storage Battery" is.

CHAPTER IV. Electrical Invention in the United States.—Review of the careers of Franklin, Morse, Field, Edison and others.—Some of the surprising applications of Electricity.—The Range-Finder.—Cooking and heating by Electricity.


That which was utterly unknown to the most splendid civilizations of the past is in our time the chief power of civilization, daily engaged in making that history of a new era that is yet to be written in words. It has been demonstrated long since that men's lives are to be influenced not by theory, or belief, or argument and reason, so much as by that course of daily life which is not attempted to be governed by argument and reason, but by great physical facts like steam, electricity and machinery in their present applications.

The greatest of these facts of the present civilization are expressed in the phrase, Steam and Steel. The theme is stupendous. Only the most prominent of its facts can be given in small space, and those only in outline. The subject is also old, yet to every boy it must be told again, and the most ordinary intelligence must have some desire to know the secrets, if such they are, of that which is unquestionably the greatest force that ever yielded to the audacity of humanity. It is now of little avail to know that all the records that men revere, all the great epics of the world, were written in the absence of the characteristic forces of modern life. A thousand generations had lived and died, an immense volume of history had been enacted, the heroes of all the ages, and almost those of our own time, had fulfilled their destinies and passed away, before it came about that a mere physical fact should fill a larger place in our lives than all examples, and that the evanescent vapor which we call steam should change daily, and effectively, the courses and modes of human action, and erect life upon another plane.

It may seem not a little absurd to inquire now "what is steam?" Everybody knows the answer. The non-technical reader knows that it is that vapor which, for instance, pervades the kitchen, which issues from every cooking vessel and waste-pipe, and is always white and visible, and moist and warm. We may best understand an answer to the question, perhaps, by remembering that steam is one of the three natural conditions of water: ice, fluid water, and steam. One or the other of these conditions always exists, and always under two others: pressure and heat. When the air around water reaches the temperature of thirty-two degrees by the scale of Fahrenheit, or or zero by the Centigrade scale, and is exposed to this temperature for a time, it becomes ice. At two hundred and twelve degrees Fahrenheit it becomes steam. Between these two temperatures it is water. But the change to steam which is so rapid and visible at the temperature above mentioned is taking place slowly all the time when water, in any situation, is exposed to the air. As the temperature rises the change becomes more rapid. The steam-making of the arts is merely that of all nature, hastened artificially and intentionally.

The element of pressure, mentioned above, enters into the proposition because water boils at a lower temperature, with less heat, when the weight of the atmosphere is less than normal, as it is at great elevations, and on days when, as we now express it, there is a low barometer. Long before any cook could explain the fact it was known that the water boiling quickly was a sign of storm. It has often been found by camping-parties on mountains that in an attempt to boil potatoes in a pot the water would all "boil away," and leave the vegetables uncooked. The heat required to evaporate it at the elevation was less than that required to cook in boiling water. It is one of the instances where the problems of nature intrude themselves prominently into the affairs of common life without previous notice.

This universal evaporation, under varying circumstances, is probably the most important agency in nature, and the most continuous and potent. There was only so much water to begin with. There will never be any less or any more. The saltness of the sea never varies, because the loss by evaporation and the new supply through condensation of the steam—rain—necessarily remain balanced by law forever. The surface of our world is water in the proportion of three to one. The extent of nature's steam-making, silent, and mostly invisible, is immeasurable and remains an undetermined quantity. The three forms of water combine and work together as though through intentional partnership, and have, thus combined, already changed the entire land surface of the world from what it was to what it is, and working ceaselessly through endless cycles will change it yet more. The exhalations that are steam become the water in a rock-cleft. It changes to ice with a force almost beyond measurement in the orderly arrangement of its crystals in compliance with an immutable law for such arrangement, and rends the rock. The process goes on. There is no high mountain in any land where water will not freeze. The water of rain and snow carries away the powdered remains from year to year, and from age to age. The comminuted ruins of mountains have made the plains and filled up and choked the mouth of the Mississippi. The soil that once lay hundreds of miles away has made the delta of every river that flows into the sea. The endless and resistless process goes on without ceasing, a force that is never expended, and but once interrupted within the knowledge of men, then covered a large area of the world with a sea of ice that buried for ages every living thing.

The common idea of the steam that we make by boiling water is that it is all water, composed of that and nothing else, and this conception is gathered from apparent fact. Yet it is not entirely true. Steam is an invisible vapor in every boiler, and does not become what we know by sight as steam until it has become partly cooled. As actual steam uncooled, it is a gas, obeying all the laws of the permanent gases. The creature of temperature and pressure, it changes from this gaseous form when their conditions are removed, and in the change becomes visible to us. Its elasticity, its power of yielding to compression, are enormous, and it gives back this elasticity of compression with almost inconceivable readiness and swiftness. To the eye, in watching the gliding and noiseless movements of one of the great modern engines, the power of which one has only a vague and inadequate conception seems not only inexplicable, but gentle. The ponderous iron pieces seem to weigh nothing. There is a feeling that one might hinder the movement as he would that of a watch. There is an inability to realize the fact that one of the mightiest forces of nature is there embodied in an easy, gliding, noiseless impulse. Yet it is one that would push aside massy tons of dead weight, that would almost unimpeded crush a hole through the enclosing wall, that whirls upon the rails the drivers of a locomotive weighing sixty tons as though there were no weight above them, no bite upon the rails. There is an enormous concentration of force somewhere; of a force which perhaps no man can fairly estimate; and it is under the thin shell we call a boiler. Were it not elastic it could not be so imprisoned, and when it rebels, when this thin shell is torn like paper, there is a havoc by which we may at last inadequately measure the power of steam.

We have in modern times applied the word "engine" almost exclusively to the machine which is moved by the pressure of steam. Yet we might go further, since one of the first examples of a pressure engine, older than the steam machine by nearly four hundred years, is the gun. Reduced to its principle this is an engine whose operation depends upon the expansion of gas in a cylinder, the piston being a projectile. The same principle applies in all the machines we know as "engines." An air-engine works through the expansion of air in a cylinder by heat. A gas-engine, now of common use, by the expansion, which is explosion, caused by burning a mixture of coal-gas and air, and the steam-engine, the universal power generator of modern life, works by the expansion of the vapor of water as it is generated by heat. Steam may be considered a species of gradual explosion applied to the uses of industry. It often becomes a real one, complying with all the conditions, and as destructive as dynamite.

It cannot be certainly known how long men have experimented with the expansive force of steam. The first feeble attempt to purloin the power of the geyser was probably by Hero, of Alexandria, about a hundred and thirty years before Christ. His machine was also the first known illustration of what is now called the "turbine" principle; the principle of reaction in mechanics. [Footnote: This principle is often a puzzle to students. There is an old story of the man who put a bellows in his boat to make wind against the sail, and the wind did not affect the sail, but the boat went backward in an opposite direction from the nozzle of the bellows. There is probably no better illustration of reaction than the "kick" of a gun, which most persons know about. The recoil of a six-pound field piece is usually from six to twelve feet. It can be understood by supposing a gun to be loaded with powder and an iron rod longer than the barrel to be left on the charge. If the outer end of this rod were then placed against a tree, and the gun were fired, it is manifest that the gun would become the projectile, and be fired off of the rod backward or burst. In ordinary cases the air in the bore, and immediately outside of the muzzle, acts comparatively, and in a measure, as the supposed rod against the tree would. It gives way, and is elastic, but not as quickly as the force of the explosion acts, and the gun is pushed backwards. It is the turbine principle, running into hundreds of uses in mechanics.] He made a closed vessel from whose opposite sides radiated two hollow arms with holes in their sides, the holes being on opposite sides of the tubes from each other. This vessel he mounted on an upright spindle, and put water in it and heated the water. The steam issuing from the holes in the arms drove them backward. The principle of the action of Hero's machine has been accepted for two thousand years, though never in a steam-engine. It exists under all circumstances similar to his. In water, in the turbine wheel, it has been made most efficacious. The power applied now for the harnessing of Niagara for the purpose of sending electric currents hundreds of miles is the turbine wheel.

Hero appears to the popular imagination as the greatest inventor of the past. Every school boy knows him. Archimedes, the Greek, was the greater, and a hundred and fifty years the earlier, and was the author of the significance of the word "Eureka," as we use it now. But Hero was the pioneer in steam. He made the first steam-engine, and is immortal through a toy.

The first practical device in which expansion was used seems to have been for the exploiting of an ecclesiastical trick intended to impress the populace. There is a saying by an antique wit that no two priests or augurs could ever meet and look at each other without a knowing wink of recognition. Hero is said to have been the author of this contrivance also. The temple doors would open by themselves when the fire burned on the altar, and would close again when that fire was extinguished, and the worshippers would think it a miracle. It is interesting because it contained the principle upon which was afterwards attempted to be made the first working low-pressure or atmospheric steam-engine. Yet it was not steam, but air, that was used. A hollow altar containing air was heated by the fire being kindled upon it. The air expanded and passed through a pipe into a vessel below containing water. It pressed the water out through another pipe into a bucket which, being thereby made heavier, pulled open the temple doors. When the fire went out again there was a partial vacuum in the vessel that had held the water at first, and the water was sucked back through the pipe out of the bucket. That became lighter again and allowed the doors to close with a counter-weight. All that was then necessary to convince the populace of the genuineness of the seeming miracle was to keep them from understanding it. The machinery was under the floor. There have been thousands of miracles since then performed by natural agencies, and there have passed many ages since Hero's machine during which not to understand a thing was to believe it to be supernatural.

From the time of Hero until the seventeenth century there is no record of any attempt being made to utilize steam-pressure for a practical purpose. The fact seems strange only because steam-power is so prominent a fact with ourselves. The ages that intervened were, as a whole, times of the densest superstition. The human mind was active, but it was entirely occupied with miracle and semi-miracle; in astrology, magic and alchemy; in trying to find the key to the supernatural. Every thinker, every educated man, every man who knew more than the rest, was bent upon finding this key for himself, so that he might use it for his own advantage. During all those ages there was no idea of the natural sciences. The key they lacked, and never found, that would have opened all, is the fact that in the realm of science and experiment there is no supernatural, and only eternal law; that cause produces its effect invariably. Even Kepler, the discoverer of the three great laws that stand as the foundation of the Copernican system of the universe, was in his investigations under the influence of astrological and cabalistic superstitions. [Footnote: Kepler, a German, lived between 1571 and 1630. His life was full of vicissitudes, in the midst of which he performed an astonishing Even the science of amount of intellectual labor, with lasting results. He was the personal friend of Galileo and Tycho Brahe, and his life may be said to have been spent in finding the abstract intelligible reason for the actual disposition of the solar system, in which physical cause should take the place of arbitrary hypothesis. He did this.] medicine was, during those ages, a magical art, and the idea of cure by medicine, that drugs actually cure, is existent to this day as a remnant of the Middle Ages. A man's death-offense might be that he knew more than he could make others understand about the then secrets of nature. Yet he himself might believe more or less in magic. No one was untouched; all intellect was more or less enslaved.

And when experiments at last began to be made in the mechanisms by which steam might be utilized they were such as boys now make for amusement; such as throwing a steam-jet against the vanes of a paddle-wheel. Such was Branca's engine, made nine years after the landing of our forefathers at Plymouth, and thought worthy of a description and record. The next attempt was much more practical, but cannot be accurately assigned. It consisted of two chambers, from each of which alternately water was forced by steam, and which were filled again by cooling off and the forming of a vacuum where the steam had been. One chamber worked while the other cooled. It was an immense advance in the direction of utility.

About 1698, we begin to encounter the names that are familiar to us in connection with the history of the steam-engine. In that year Thomas Savery obtained a patent for raising water by steam. His was a modification of the idea described above. The boilers used would be of no value now, nevertheless the machine came into considerable use, and the world that learned so gradually became possessed with the idea that there was a utility in the pressure of steam. Savery's engine is said to have grown out of the accident of his throwing a flask containing a little wine on the fire at a tavern. Concluding immediately afterwards that he wanted it, he snatched it off of the fender and plunged it into a basin of water to cool it. The steam inside instantly condensing, the water rushed in and filled it as it cooled.

We now come to the beginning of the steam engine as we understand the term; the machine that involves the use of the cylinder and piston. These two features had been used in pumps long before, the atmospheric pump being one of the oldest of modern machines. The vacuum was known and utilized long before the cause of it was known. [Footnote: The discoverer was an Italian, Torricelli, about 1643. Gallileo, his tutor and friend, did not know why water would not rise in a tube more than thirty-three feet. No one knew of the weight of the atmosphere, so late as the early days of this republic. Many did not believe the theory long after that time. Torricelli, by his experiments, demonstrated the fact and invented the mercurial barometer, long known as the "Torricellian Tube." This last instrument led to another discovery; that the weight of the atmosphere varied from time to time in the same locality, and that storms and weather changes were indicated by a rising and falling of the column of mercury in the tube of the siphon-barometer. That which we call the "weather-bureau," organized by General Albert J. Myer, United States Army, in 1870, and growing out of the army signal service, of which he was chief, makes its "forecasts" by the use of the telegraph and the barometer. The "low pressure area" follows a path, which means a change of weather on that path. Notices by telegraph define the route, and the coming storm is not foretold, but foreknown; not prophesied, but ascertained. If we have been led from the crude pump of Gallileo's time directly to the weather bureau of the present with its invaluable signals to sailors and convenience to everybody, it is no more than is continually to be traced even to the beginning of the wonderful school of modern science.]

But in the beginning it was not proposed to use steam in connection with the cylinder and piston which now really constitutes the steam-engine. Reverting again to the example of the gun, it was suggested to push a piston forward in a tube by the explosion of gunpowder behind it, or to repeat the Savery experiment with powder instead of steam. These ideas were those of about 1678-1685. The very earliest cylinder and piston engine was suggested by Denis Papin in 1690. These early inventors only went a portion of the way, and almost the entire idea of the steam-engine is of much later date. Mankind had then a singular gift of beginning at the wrong end. Every inventor now uses facts that seem to him to have been always known, and that are his by a kind of intuition. But they were all acquired by the tedious experience of a past that is distinguished by a few great names whose owners knew in their time perhaps one-tenth part as much as the modern inventor does, who is unconsciously using the facts learned by old experience. But the others began at the beginning.

In 1711, almost a hundred years after the arrival at Jamestown and Plymouth of the fathers of our present civilization, the steam-engine that is called Newcomen's began to be used for the pumping of water out of mines. This engine, slightly modified, and especially by the boy who invented the automatic cut-off for the steam valves, was a most rude and clumsy machine measured by our ideas. There appears to have been scarcely a single feature of it that is now visible in a modern engine. The cylinder was always vertical. It had the upper end open, and was a round iron vessel in which a plunger moved up and down. Steam was let in below this plunger, and the walking-beam with which it was connected by a rod had that end of it raised. When raised the steam was cut off, and all that was then under the piston was condensed by a jet of cold water. The outside air-pressure then acted upon it and pushed it down again. In this down-stroke by air-pressure the work was done. The far end of the walking-beam was even counter-weighted to help the steam-pressure. The elastic force of compressed steam was not depended upon, was hardly even known, in this first working and practical engine of the world. Every engine of that time was an experimental structure by itself. The boiler, as we use it, was unknown. Often it was square, stayed and braced against pressure in a most complicated way. Yet the Newcomen engine held its place for about seventy-five years; a very long time in our conception, and in view of the vast possibilities that we now know were before the science. [Footnote: As late as 1880, the steam-engine illustrated and described in the "natural philosophy" text books was still the Newcomen, or Newcomen-Watt engine, and this while that engine was almost unknown in ordinary circumstances, and double-acting high-pressure engines were in operation everywhere. This last, without which not much could be done that is now done, was evidently for a long time after it came into use regarded as a dangerous and unphilosophical experiment, hardly scientific, and not destined to be permanently adopted.]

In the year 1760, James Watt, who was by occupation what is now known as a model-maker, and who lived in Glasgow, was called upon to repair a model of a Newcomen engine belonging to the university. While thus engaged he was impressed with the great waste of steam, or of time and fuel, which is the same thing, involved in the alternate heating and cooling of Newcomen's cylinder. To him occurred the idea of keeping the cylinder as hot as the steam used in it. Watt was therefore the inventor of the first of those economies now regarded as absolute requirements in construction. He made the first "steam-jacket," and was, as well, the author of the idea of covering the cylinder with a coat of wood, or other non-conductor. He contrived a second chamber, outside of the cylinder, where the then indispensable condensation should take place. Then he gave this cylinder for the first time two heads, and let out the piston-rod through a hole in the upper head, with packing. He used steam on the upper side of the piston as well as the lower, and it will be seen that he came very near to making the modern engine.

Yet he did not make it. He was still unable to dispense with the condensing and vacuum and air-pressure ideas. Acting for the first time in the line of real efficiency, he failed to go far enough to attain it. He made a double-acting engine by the addition of many new parts; he even attained the point of applying his idea to the production of circular motion. But he merely doubled the Newcomen idea. His engine became the Newcomen-Watt. He had a condensing chamber at each end of the stroke and could therefore command a reciprocating movement. The walking-beam was retained, not for the purpose for which it is often used now, but because it was indispensable to his semi-atmospheric engine.

It may seem almost absurd that the universal crank-movement of an engine was ever the subject of a patent. Yet such was the case. A man named Pickard anticipated Watt, and the latter then applied to his engines the "sun-and-planet" movement, instead of the crank, until the patent on the latter expired. The steam-engine marks the beginning of a long series of troubles in the claims of patentees.

In 1782 came Watt's last steam invention, an engine that used steam expansively. This was an immense stride. He was also at the same time the inventor of the "throttle," or choke valve, by which he regulated the supply of steam to the piston. It seems a strange thing that up to this time, about 1767, an engine in actual use was started by getting up steam enough to make it go, and waiting for it to begin, and stopped by putting out the fire.

Then he invented the "governor," a contrivance that has scarcely changed in form, and not at all in action, since it was first used, and is one of the few instances of a machine perfect in the beginning. Two balls hang on two rods on each side of an upright shaft, to which the rods are hinged. The shaft is rotated by the engine, and the faster it turns the more the two balls stand out from it. The slower it turns the more they hang down toward it. Any one can illustrate this by whirling in his hands a half-open umbrella. There is a connection between the movement of these balls and the throttle; as they swing out more they close it, as they fall closer to the shaft they open it. The engine will therefore regulate its own speed with reference to the work it has to do from moment to moment.

Through all these changes the original idea remained of a vacuum at the end of every stroke, of indispensable assistance from atmospheric pressure, of a careful use of the direct expansive power of steam, and of the avoidance of the high pressures and the actual power of which steam is now known to be safely capable. [Footnote: In a reputable school "philosophy" printed in 1880, thus: "In some engines" (describing the modern high-pressure engine, universal in most land service) "the apparatus for condensing steam alternately above and below the piston is dispensed with, and the steam, after it has moved the piston from one end of the cylinder to the other, is allowed to escape, by the opening of a valve, directly into the air. To accomplish this it is evident that the steam must have an elastic force greater than the pressure of the air, or it could not expand and drive out the waste steam on the other side of the piston, in opposition to the pressure of the air." According to this teaching, which the young student is expected to understand and to entirely believe, a pressure of steam of, say eighty to a hundred and twenty pounds to the inch on one side of the piston is accompanied by an absolute vacuum there, which permits the pressure of the outside air to exert itself against the opposite side of the piston through the open port at the other end of the cylinder. That is, a state of things which would exist if the steam behind the piston were suddenly condensed, exists anyway. If it be true the facts should be more generally known; if not, most of the school "philosophies" need reviewing.] Then an almost unknown American came upon the scene. In English hands the story at once passes from this point to the experiments of Trevethick and George Stevenson with steam as applied to railway locomotion. But as Watt left it and Trevethick found it, the steam engine could never have been applied to locomotion. It was slow, ponderous, complicated and scientific, worked at low pressures, and Watt and his contemporaries would have run away in affright from the innovation that came in between them and the first attempts of the pioneers of the locomotive. This innovation was that of Evans, the American, of whom further presently.

The first steam-engine ever built in the United States was probably of the Watt pattern, in 1773. In 1776, the year of beginning for ourselves, there were only two engines of any kind in the colonies; one at Passaic, N. J., the other at Philadelphia. We were full of the idea of the independence we had won soon afterwards, but in material respects we had all before us.

In 1787, Oliver Evans introduced improvements in grain mills, and was generally efficient as one of the beginners in the field of American invention. Soon afterwards he is known to have made a steam-engine which was the first high-pressure double-acting engine ever made. The engine that used steam at each end of the cylinder with a vacuum and a condenser, was in this first instance, so far as any record can be found, supplanted by the engine of to-day. The reason of the delay it is difficult to account for on any other grounds than lack of boldness, for unquestionably the early experimenters knew that such an engine could be made. They were afraid of the power they had evoked. Such a machine may have seemed to them a willful toying with disaster. Their efforts were bent during many years toward rendering a treacherous giant useful, yet entirely harmless. Their boilers, greatly improved over those I have mentioned, never were such as were afterwards made to suit the high pressures required by the audacity of Hopkins. This audacity was the mother of the locomotive, and of that engine which almost from that date has been used for nearly every purpose of our modern life that requires power. The American innovation may have passed unnoticed at the time, but intentionally or otherwise it was imitated as a preliminary to all modern engines. Nearly a century passed between the making of the first practical engine and that one which now stands as the type of many thousands. But now every little saw-mill in the American woods could have, and finally did have, its little cheap, unscientific, powerful and non-vacuum engine, set up and worked without experience, and maintained in working order by an unskilled laborer. A thousand uses for steam grew out of this experiment of a Yankee who knew no better than to tempt fate with a high-pressure and speed and recklessness that has now become almost universal.

There was with Watt and his contemporaries apparently a fondness for cost and complications. Most likely the finished Watt engine was a handsome and stately machine, imposing in its deliberate movements. There is apparently nothing simpler than the placing of the head of the piston-rod between two guide-pieces to keep it in line and give it bearing. Yet we have only to turn back a few years and see the elaborate and beautiful geometrical diagram contrived by Watt to produce the same simple effect, and known as a "parallel motion." It kept its place until the walking-beam was cast away, and the American horizontal engine came into almost universal use.

The object of this chapter so far has been to present an idea of beginnings; of the evolution of the universal and indispensable machine of civilization. The steam-engine has given a new impetus to industry, and in a sense an added meaning to life. It has made possible most that was ever dreamed of material greatness. It has altered the destiny of this nation, and other nations, made greatness out of crude beginnings, wealth out of poverty, prosperity upon thousands of square miles of uninhabitable wilderness. It was the chiefest instrumentality in the widening of civilization, the bringing together of alien peoples, the dissemination of ideas. Electricity may carry the idea; steam carries the man with the idea. The crude misconceptions of old times existed naturally before its time, and have largely vanished since it came. Marco Polo and Mandeville and their kind are no longer possibilities. Applied to transportation, locomotion alone, its effects have been revolutionary. Applied to common life in its minute ramifications these effects could not have been believed or foretold, and are incredible. The thought might be followed indefinitely, and it is almost impossible to compare the world as we know it with the world of our immediate ancestors. Only by means of contrasts, startling in their details, can we arrive at an adequate estimate, even as a moral farce, of the power of steam as embodied in the modern engine in a thousand forms.

* * * * *

Perhaps it might be well to attempt to convey, for the benefit of the youngest reader, an idea of the actual working of the machine we call a steam-engine. There are hundreds of forms, and yet they are all alike in essentials. To know the principle of one is to know that of all. There is probably not an engine in the world in effective common use—the odd and unusual rotary and other forms never having been practical engines—that is not constructed upon the plan of the cylinder and piston. These two parts make the engine. If they are understood only differences in construction and detail remain.

Imagine a short tube into which you have inserted a pellet, or wad of any kind, so that it fits tolerably, yet moves easily back and forth in the bore of the tube. If this pellet or wad is at one end of the tube you may, by inserting that end in your mouth and putting air-pressure upon it, make it slide to the other end. You do not touch it with anything; you may push it back and forth with your breath as many times as you wish, not by blowing against it, so to speak, but by producing an actual air-pressure upon it which is confined by the sides of the tube and cannot go elsewhere. The only pressure necessary is enough to move the pellet.

Now, if you push this little pellet one way by the air-pressure from your mouth, and then, instead of reversing the tube in the mouth and pushing it back again in the same way, reverse the process and suck the air out from behind it, it comes back by the pressure of the outside atmosphere. This was the way the first steam engines worked. Their only purpose was to get the piston lifted, and air-pressure did all the actual work.

If you turn the tube, and put an air-pressure first at one end and then at the other, and pay no attention to vacuum or atmospheric pressure, you will have the principle of the later modern, almost universal, high-pressure, double-acting steam-engine.

But now you must imagine that the tube is fixed immovably, and that the air-pressure is constant in a pipe leading to the tube, and yet must be admitted first to one end of the tube and then to the other alternately, in order to push the pellet back and forth in it. It seems simple. Perhaps the young reader can find a way to do it, but it required about a hundred years for ingenious men to find out how to do precisely the same thing automatically. It involves the steam-chest and the slide-valve, and all other kinds of steam valves that have been invented, including the Corliss cut-off, and all others that are akin to it in object and action.

But now imagine the tube closed at each end to begin with, and the little moving pellet, or plunger, on the inside. To get the air into both ends of the tube alternately, and to use its pressure on each side of the pellet, we will suppose that the air-pipe is forked, and that one end of each fork is inserted into the side of the tube near the end, like the figure below, and imagine also that you have put a finger over each end of the tube.

We are now getting the air-pressure through the pipe in both ends of the tube alike, and do not move the pellet either way. To make it move we must do something more, and open one end of the tube, and close that fork of the air-pipe, and thus get all the pressure on one side of the pellet. Remove one finger from the end of the tube, and pinch the fork of the air-tube that is on that side. The pellet will now move toward that end of the tube which is open. Reverse the process, and it can be pushed back again with air-pressure to the other end, and so on indefinitely.

Let us improve the process. We will close each end of the tube permanently, and insert four cocks in the tube and forked pipe.

We have here two tubes inserted at each end of the large tube, and in each of these is a cock. We have each cock connected by a rod to the lever set on a pin in the middle of the tube. We must have these cocks so arranged that when the lever is moved (say) to the right, A. is opened and B. is closed, and D. is opened and C. is closed. Now if the air-pressure is constant through the forked air-tube, and the cock E. is open, if the top of the lever is moved to the right, the pellet will be pushed to the left in the large tube. If the lever is moved to the left, and the two cocks that were open are closed, and the two that were closed are opened again, the pellet will be sent back to the other end of the tube. This movement of the pellet in the tube will occur as often as the lever is moved and there is any air-pressure in the forked tube. There is a supply-cock, opened and an escape-cock closed, and an escape-cock opened and a supply-cock closed, at each end of the tube, every time the lever is moved.

We are using air instead of steam, and the movement of these four cocks all at the same time, and the result of moving them, is precisely that of the slide-valve of a steam-engine. The diagrams of this slide-valve would be difficult to understand. The action of the cocks can be more readily understood, and the result, and even much of the action, is precisely the same.

But to make the arrangement entirely efficient we must go a little further into the construction of a steam-engine. The pellet in the tube has no connection with the outside, and we can get nothing from it. So we give it a stem, thus: and when we do so we change it into a piston and its rod. Where it passes through the stopper at the end of the tube it must pass air- (or steam-) tight. Then as we push the piston back and forth we have a movement that we can attach to machinery at the end of the rod, and get a result from. We also move the cocks, or valves, automatically by the movement of the rod.

Turning now to Fig. 3 again let us imagine a connection made between the rod and the end of the lever in Fig. 2. Now put on the air (or steam) pressure, and when the piston has reached the right-hand end of the tube it automatically, by its connections, closes B. and opens A., and opens D. and closes C. The pellet will be pushed back in the tube and go to the other end of it, through the pressure coming against the piston through the part of the air tube where the cock D. is open. It reaches the left-hand end of the tube, and we must imagine that when it gets there it, in the same manner and by the proper connections, closes D., opens C., closes A. and opens B. If these mechanical movements are completed it must be plain that so long as the air (or steam) pressure is continued in the forked pipe the piston will automatically cut off its supply and open its escape at each alternate end, and move back and forth. Any boy can see how a backward and forward movement may be made to give motion to a crank. All other details in an engine are questions of convenience in construction, and not questions of principle or manner of action.

Of older readers, I might request the supposition that, in Fig. 2, only the valves A. and B. were automatically and invariably opened and closed by the action of the piston-rod of Fig. 3, and that C. and D. were controlled solely by the governor, before mentioned, which we will suppose to be located at E. Then the escape of the steam ahead of the piston must always come at the same time with reference to the stroke, but the supply will depend upon the requirements of each individual stroke, and the work it has to do, and afford to the piston a greater or less push, as the emergencies of that particular instant may require. This arrangement would be one of regularity of movement and of economy in the use of steam. That which is needed is supplied, and no more. This is the principle and the object of the Corliss cut-off, and of all others similar to it in purpose. Their principle is that only the escape is automatically controlled by the movements of the piston-rod, occurring always at the same time with reference to the stroke, while the supply is under control of the movement of the governor, and regulated according to the emergencies of the movement. The governor, in any of its forms, as ordinarily applied, performs only half of this function. It regulates the general supply of steam to the cylinder, but the supply-valve continues to be opened, always to full width, and always at the same moment with reference to the stroke. With the two separate sets of automatic machinery required by engines of the Corliss type, the piston does not always receive its steam at the beginning of the stroke, and the supply may be cut off partially or entirely at any point in its passage along the cylinder, as the work to be done requires. The economic value of such an arrangement is manifest. No attempt is made here to explain by means of elaborate diagrams. It is believed that if the reason of things, and the principle of action, is clear, the particulars may be easily studied by any reader who is disposed to master mechanical details.


In very recent times the processes of civilization have had a strong and almost unnoted tendency toward the increased use of the best. Thus, most that iron once was, in use and practice, steel now is. This use, growing daily, widens the scope that must be taken in discussing the features of an Age of Steel. One name has largely supplanted the other. In effect iron has become steel. Had this chapter been written twenty, or perhaps ten, years earlier, it should have been more appropriately entitled the Age of Iron. A separation of the two great metals in general description would be merely technical, and I shall treat the subject very much as though, in accordance with the practical facts of the case, the two metals constituted one general subject, one of them gradually supplanting the other in most of the fields of industry where iron only was formerly used.

The greatest progresses of the race are almost always unappreciated at the time, and are certainly undervalued, except by contrast and comparison. We must continually turn backward to see how far we have gone. An individual who is born into a certain condition thinks it as hard as any other until by experience and comparison he discovers what his times might have been. As for us, in the year 1894, we are not compelled to look backward very far to observe a striking contrast.

All the wealth of today is built upon the forests and prairies and swamps of yesterday, and we must take a wider and more comprehensive glance backward if we should wish to institute those comparisons which make contrasts startling.

We are accustomed to read and to hear of the "Age" of this or that. There was a "Stone" Age, beginning with the tribes to whom it came before the beginnings of their history, or even of tradition, and if we look far backward we may contrast our own time with the times of men who knew no metals. They were men. They lived and hoped and died as we do, even in what is now our own country. Often they were not even barbarians. They builded houses and forts, and dug drains and built aqueducts, and tilled the soil. They knew the value of those things we most value now, home and country; and they organized armies, and fought battles, and died for an idea, as we do. Yet all the time, a time ages long, the utmost help they had found for the bare and unaided hand was the serrated edge of a splintered flint, or the chance-found fragment beside a stream that nature, in a thousand or a million years of polishing, had shaped into the rude semblance of a hammer or a pestle. All men have in their time burned and scraped and fashioned all they needed with an astonishing faculty of making it answer their needs. They once almost occupied the world. Such were those who, so far as we know, were once the exclusive owners of this continent. They were an agricultural, industrious and home-loving people. [Footnote: The Mound Builders and Cave Dwellers. They knew only lead and copper.]

Then came, with a strange leaving out of the plentiful and easily worked metals which are the subject of this chapter, the great Age of Bronze. This next stage of progress after stone was marked by a skillful alloy, requiring even now some scientific knowledge in its compounding of copper and tin. A thousand theories have been brought forward to account for this hiatus in the natural stages of human progress, the truth probably being that both tin and copper are more fusible than iron-ores, and that both are found as natural metals. Some accident such as accounts for the first glass, [Footnote: The story is told by Pliny. Some sailors, landing on the eastern coast of Spain, supported their cooking utensils on the sand with stones, and built a fire under them. When they had finished their meal, glass was found to have been made from the niter and sea-sand by the heat of their fire. The same thing has been done, by accident, in more recent times, and may have been done before the incident recounted. It is also done by the lightning striking into sand and making those peculiar glass tubes known as Fulmenites, found in museums and not very uncommon.] some camp-fire unintended fusion, produced the alloy that became the metal of all the arms and arts, and so remained for uncounted centuries. In this connection it is declared that the Age of Bronze knew something that we cannot discover; the art of tempering the alloy so that it would bear an edge like fine steel. If this be true and we could do it, we should by choice supplant the subject of this chapter for a thousand uses. As the matter stands, and in our ignorance of a supposed ancient secret, the tempering of bronze has an effect precisely opposite to that which the process has upon steel.

Nevertheless, the old Age of Bronze had its vicissitudes. Those men knew nothing that we consider knowledge now. It was a time when some of the most splendid temples, palaces and pyramids were constructed, and these now lie ruined yet indestructible in the nooks and corners of a desert world. Perhaps the hard rock was chiselled with tools of tempered copper. The fact is of little importance now since the object of the art is almost unknown, and the scattered capitals and columns of Baalbeck are like monuments without inscriptions; the commemorating memorials of a memory unknown. The Age of Bronze and all other ages that have preceded ours lacked the great essentials that insure perpetuity. The Age of Steel, that came last, that is ours now; a degenerate time by all ancient standards; has for its crowning triumph a single machine which is alone enough to satisfy the union of two names that are to us what Caster and Pollux were to the bronze-armed Roman legions of the heroic time—the modern power printing-press.

It may be well to ask and answer the question that at the first view may seem to the reader almost absurd. What is steel? The answer must, in the majority of instances, be given in accordance with the common conception; which is that it is not iron, yet very like it. The old classification of the metal, even familiarly known, needs now to be supplemented, since it does not describe the modern cast and malleable compounds of iron, carbon and metalloids used for structural purposes, and constituting at least three-fourths of the metal now made under the name of steel. The old term, steel, meant the cast, but malleable, product of iron, containing as much carbon as would cause the metal to harden when heated to redness and quenched in water. It must also be included in the definition that the product must be as free as possible from all admixtures except the requisite amount of carbon. This is "tool" steel. [Footnote: It must not be understood that tool steel was always a cast metal. In manufacturing, iron bars were laid together in a box or retort, together with powdered charcoal, and heated to a certain degree for a certain time. The carbon from the charcoal was absorbed by the iron, and from the blistered appearance of the bars when taken out this product was, and is known as "blister" steel.]

And here occurs a strange thing. A skill in chemistry, the successor of alchemy, is the educational product of the highest form of civilization.

Metallurgy is the highest and most difficult branch of chemistry. Steel is the best result of metallurgy. Yet steel is one of the oldest products of the race, and in lands that have been asleep since written history began. Wendell Phillips in a lecture upon "The Lost Arts,"— celebrated at the date of its delivery, but now obsolete because not touching upon advances made in science since Phillips's day,—states that the first needle ever made in England, in the time of Henry VIII, was made by a Negro, and that when he died the art died with him. They did not know how to prepare the steel or how to make the needle. He adds that some of the earliest travelers in Africa found a tribe in the interior who gave them better razors than the explorers had. Oriental steel has been celebrated for ages as an inimitable product. It is certainly true that by the simple processes of semi-barbarism the finest tool-steel has been manufactured, perhaps from the days of Tubal Cain downward. The keenness of edge, the temper whose secret is now unknown, the marvelous elasticity of the tools of ancient Damascus, are familiar by repute to every reader and have been celebrated for thousands of years. The swords and daggers made in central Asia two thousand years ago were more remarkable than any similar product of the present for elaborate and beautiful finish as well as for a cutting quality and a tenacity of edge unknown to modern days. All the tests and experiments of a modern government arsenal, with all the technical knowledge of modern times, do not produce such tool-steel. It is also alleged that the ancient weapons did not rust as ours do, and that the oldest are bright to this day. The steel tools and arms that are made in the strange country of India do not rust there, while in the same climate ours are eaten away. Besides the secret of tempering bronze, it would seem that among the lost arts [Footnote: Modern science dates from three discoveries. That of Copernicus, the effect of which was to separate scientific astronomy, the astronomy of natural law and defined cause, from astrology, or the astronomy of assertion and tradition. That of Torricelli and Paschal of the actual and measurable weight of the atmosphere, which was the beginning for us of the science of physics, and that of Lavoisier who suspected, and Priestly who demonstrated, oxygen and destroyed the last vestiges of the theory of alchemy. Stahl was the last of these, and Lavoisier the first of the new school in that which I have stated is the highest development of modern science, chemistry. In all these departments we have no adequate reason to assert that we are not ourselves mere students. Some of the functions of oxygen, and the simplest, were unknown within five years before the date of these chapters.]—a subject that it is easy to make too much of—there was a chemical ingredient or proportion in steel that we now know nothing of. The old lands of sameness and slumber have kept their secrets.

The definition of the word "steel" has been the subject of a scientific quarrel on account of new processes. The grand distinguishing trait of steel, to which it owes all the qualities that make it valuable for the uses to which no other metal can be put, is homogeneity due to fusion. Wrought iron, while having similar chemical qualities, and often as much carbon, is laminated in structure. Structural qualities are largely increasing in importance, and as the structural compounds came gradually to be produced more and more by the casting processes; as they ceased to be laminated in structure and became homogeneous, they were called by the name of steel. The name has been based upon the structure of the material rather than upon its chemical ingredients as heretofore. There is now a disposition to call all compounds of iron that are crystalline in structure, made homogeneous by casting, by the general name of steel, and to distinguish all those whose structural quality is due to welding by the name of iron. [Footnote: It should be understood that the shapes of structural and other forms of what we now call steel are given by rolling the ingot after casting, and that the crystalline composition of the metal remains.] This is an outline of the controversy about the differences which should be expressed by a name, between tool steel and structural steel. In tool steel there is an almost infinite variety as to quality. The best is a high product of practical science, and how to make the best seems now, as hinted above, a lost art. It has, besides, a great variety. These varieties are only produced after thousands of experiments directed to finding out what ingredients and processes make toward the desired result. These processes, were they all known outside the manufactories of certain specialists, would little interest the general reader. All machinists know of certain brands of tool steel which they prefer. Tool steel is made especially for certain purposes; as for razors and surgical instruments, for saws, for files, for springs, for cutting tools generally. In these there may be little actual difference of quality or manufacture. The tempering of steel after it has been forged into shape is a specialty, almost a natural gift. The manufacture of tool steel, is, as stated, one of the most technical of the arts, and one of the most complicated of the applications of long experience and experiment.

Cast steel was first made in 1770 by Huntsman, who for the first time melted the "blistered" steel, which until that time had been the tool steel of commerce, in a crucible. Since that time the process of melting wrought iron has become practical and cheap, and results in crystalline, instead of a laminated structure for all steels. The definition of steel now is that it is a compound of iron which has been cast from a fluid state into a malleable mass.

The ordinary test applied to distinguish wrought iron from steel is to ascertain whether the metal hardens with heating and suddenly cooling in cold water, becoming again softened on reheating and cooling slowly. If it does this it is steel of some quality, good or bad; if not, it is iron.

* * * * *

The first mention of iron-ore in America is by Thomas Harriot, an English writer of the time of Raleigh's first colonies. He wrote a history of the settlement on Roanoke Island, in which he says: "In two places in the countrey specially, one about foure score and the other six score miles from the port or place where wee dwelt, wee founde neere the water side the ground to be rockie, which by the triall of a minerall man, was found to hold iron richly. It is founde in manie places in the countrey else." Harriot speaks further of "the small charge for the labour and feeding of men; the infinite store of wood; the want of wood and the deerness thereof in England." It was before the day of coal and coke, or of any of the processes known now. The iron mines of Roanoke Island were never heard of again.

Iron-ore in the colonies is again heard of in the history of Jamestown, in 1607. A ship sailed from there in 1608 freighted with "iron-ore, sassafras, cedar posts and walnut boards." Seventeen tons of iron were made from this ore, and sold for four pounds per ton. This was the first iron ever made from American ores. The first iron-works ever erected in this country were, of course almost, burned by the Indians, in 1622, and in connection three hundred persons were killed.

Fire and blood was the end of the beginning of many American industries. Ore was plentiful, wood was superabundant, methods were crude. They could easily excel the Virginia colonists in making iron in Persia and India at the same date. The orientals had certain processes, descended to them from remote times, discovered and practiced by the first metal-workers that ever lived. The difference in the situation now is that here the situation and methods have so changed that the story is almost incredible. There, they remain as always. The first instance of iron-smelting in America is a text from which might be taken the entire vast sermon of modern industrial civilization.

The orientals lacked the steam-engine. So did we in America. The blast was impossible everywhere except by hand, and contrivances for this purpose are of very great antiquity. The bellows was used in Egypt three thousand years ago. It may be that the very first thought by primitive man was of how to smelt the metals he wanted so much and needed so badly. His efforts to procure a means of making his fire burn under his little dump of ore led him first into the science which has attained a new importance in very recent times, pneumatics. The first American furnaces were blown by the ordinary leather bellows, or by a contrivance they had which was called a "blowing tub," or by a very ancient machine known as a "trompe" in which water running through a wooden pipe was very ingeniously made to furnish air to a furnace. It is when the means are small that ingenuity is actually shown. If the later man is deprived of the use of the latest machinery he will decline to undertake an enterprise where it is required. The same man in the woods, with absolute necessity for his companion, will show an astonishing capacity for persevering invention, and will live, and succeed.

In the lack of steam they learned, as stated, to use water-power for making the blast. The "blowing-tub" was such a contrivance. It was built of wood, and the air-boxes were square. There were two of these, with square pistons and a walking-beam between them. A third box held the air under a weighted piston and fed it to the furnace. Some of these were still in effective use as late as 1873. They were still used long after steam came. The entire machine might be called, correctly, a very large piston-bellows. A smaller machine with a single barrel may be found now, reduced, in the hands of men who clean the interior of pianos, and tune them.

The first iron works built in the present United States that were commercially successful, were established in Massachusetts, in the town of Saugus, a few miles from Boston. The company had a monopoly of manufacture under grant for ten years. [Footnote: Some quaint records exist of the incidents of manufacturing in those times.

In 1728, Samuel Higley and Joseph Dewey, of Connecticut, represented to the Legislature that Higley had, "with great pains and cost, found out and obtained a curious art by which to convert, change, or transmute, common iron into good steel sufficient for any use, and was the first that ever performed such an operation in America." A certificate, signed by Timothy Phelps and John Drake, blacksmiths, states that, in June, 1725, Mr. Higley obtained from the subscribers several pieces of iron, so shaped that they could be known again, and that a few days later "he brought the same pieces which we let him have, and we proved them and found them good steel, which was the first steel that ever was made in this country, that we ever saw or heard of." But this remarkable transmuting process was not heard of again unless it be the process of "case-hardening," re-invented some years ago, and known now to mechanics as a recipe.

The smallness of things may be inferred from the fact that, in 1740, the Connecticut Legislature granted to Messrs. Fitch, Walker & Wyllys "the sole privilege of making steel for the term of fifteen years, upon this condition that they should, in the space of two years, make half a ton of steel." Even this condition was not complied with and the term was extended.] They began in 1643, twenty-three years after the landing, which is one of the evidences of the anxiety of those troublesome people to be independent, and of how well men knew, even in those early times, how much the production of iron at home has to do with that independence. This new industry was, at all times, controlled and regulated by law.

The very first hollow-ware casting made in America is said to be still in existence. It was a little kettle holding less than a quart.

The beginnings of the iron industry in America were none too early. There came a need for them very soon after they had extended into other parts of New England, and into New Jersey, New York, Pennsylvania and Maryland. In 1775, there were a large number of small furnaces and foundries. But coal and iron, the two earth-born servants of national progress which are now always twins, were not then coupled. The first of them was out of consideration. The early iron men looked for water-falls instead, and for the wood of the primeval forest. [Footnote: It is now easy to learn that a coal-mine may be a more valuable possession than a gold-mine, and that iron is better as an industry than silver. There are mountains of iron in Mexico, but no coal, and silver-mines so rich that silver, smelted with expensive wood fuel, is the staple product of the country. Yet the people are among the poorest in Christendom. There is a ceaseless iron-famine, so that the chiefest form of railway robbery is the stealing of the links and pins from trains. There are almost no metal industries. A barbaric agriculture prevails for the want of material for the making of tools. The actual means of progress are not at hand, notwithstanding the product of silver, which goes by weight as a commodity to purchase most that the country needs.] They became very necessary to the country in 1755—when the "French" war came, and they then began the making of the shot and guns used in that struggle, and became accustomed to the manufacture in time for the Revolution. Looking back for causes conducive to momentous results, we may here find one not usually considered in the histories. But for the advancement of the iron industry in America, great for the time and circumstances, independence could not have been won, and even the feeling and desire of independence would have been indefinitely delayed.

The industry was slow, painful, and uncertain, only because the mechanic arts were pursued only to an extent possible with the skill and muscular energy of men. There were none of the wonderful automatic mechanisms that we know as machine-tools. There was only the almost unaided human arm with which to subdue the boundless savagery of a continent, and win independence and form a nation besides. The demand for huge masses of the most essential of the factors of civilization has grown since, because the ironclad and the big gun have come, and those inadequate forces and crude methods supplied for a time the demand that was small and imperative. The largest mass made then, and frequently spoken of in colonial records, was a piece called a "sow;" spelled then "sowe." It was a long, triangular mass, cast by being run into a trench made in sand. [Footnote: When, later, little side-trenches were made beside the first, with little channels to carry the metal into them, the smaller castings were naturally called "pigges." Hence our "pig-iron."]

Those were the palmy days of the "trip hammer." Nasmyth was not born until 1808, and no machine inventor had yet come upon the scene. The steam-hammer that bears his name, which means a ponderous and powerful machine in which the hammer is lifted by the direct action of steam in a piston, the lower end of whose rod is the hammer-head, has done more for the development of the iron industry than any other mechanical invention. It was not actually used until 1842, or '43. It finally, with many improvements in detail, grew into a monster, the hammer-head, or "tup," being a mass of many tons. And they of modern times were not content merely to let this great mass fall. They let in steam above the piston, and jammed it down upon the mass of glowing metal, with a shock that jars the earth. The strange thing about this Titanic machine is that it can crack an egg, or flatten out a ton or more of glowing iron. Hundreds of the forgings of later times, such as the wrought iron or steel frames of locomotives, and the shafts of steamers, and the forged modern guns, could not be made by forging without this steam hammer.

Then slowly came the period of all kinds of "machine tools." During the period briefly described above they could not make sheet metal. The rolling mill must have come, not only before the modern steam-boiler, but even before the modern plow could be made. Can the reader imagine a time in the United States when sheet metal could not be rolled, and even tin plates were not known? If so, he can instantly transport himself to the times of the wooden "trencher," and the "pewter" mug and pitcher, to the days when iron rails for tramways were unknown, and when even the "strap-iron," always necessary, was rudely and slowly hammered out on an anvil. [Footnote: About 1720, nails were the most needed of all the articles of a new country. Farmers made them for themselves, at home. The secret of how to roll out a sheet and split it into nail-rods was stolen from the one shop that knew how, at Milton, Mass., to give to another at Mlddleboro. The thief had the Biblical name of Hashay H. Thomas. He stole the secret while the hands of the Milton mill were gone to dinner, and served his country and broke up a small monopoly in so doing.]

Shears came with the "rolls;" vast engines of gigantic biting capacity, that cut sheets of iron as a lady's scissors cut paper. This cut the squares of metal used for boiler plates, and the steam-engine having come, was turned to the manufacture of materials for its own construction. Others were able to bite off great bars.

The first mill in which iron was rolled in America, was built in 1817 near Connellsville, in Fayette county, Penn. Until 1844, the rolling mills of this country produced little more than bar-iron, hoops, and plates. All the early attempts at railroads used the "strap" rail; unless cast "fish-bellies" were used; which was flat bar-iron provided with counter sunk holes, in which to drive nails for holding the iron to long stringers of wood laid upon ties. When actual rail-making for railroads began, the rolling mill raised its powers to meet the emergency. The "T" rail, universally now used, was invented by Robert Stevens, president and chief engineer of the Camden and Amboy railroad, and the first of them were laid as track for that road in 1832. From this time until 1850, rolling mills for making "U" and "T" rails rapidly increased in number, but in that year all but two had ceased to be operated because of foreign competition.

During some five years previous to this writing a revolution has taken place in the construction of buildings which has resulted in what is known as the "sky-scraper." This was, in many respects, the most startling innovation of times that are startling in most other respects, and was begun in that metropolis of surprises and successes, the city of Chicago. This innovation was really such in the matter of using steel in the entire framing of a commercial building, but it was not the first use of metal as a building material. The first iron beams used in buildings were made in 1854, in a rolling mill at Trenton, N. J., and were used in the construction of the Cooper Institute, and the building of Harper & Brothers. For these special rolls, of a special invention, were made. These have now become obsolete, and a new arrangement is used for what are known as "structural shapes."

I have spoken of the use of wood-fuel in the early stages of iron manufacture in this country, followed by the adoption exclusively of coal and its products. Then, many years later, came the departure from this in the use of gas for fuel. The first use of this kind is said to date as far back as the eighth century, and modifications of the idea had been put in practice in this country, in which gas was first made from coal and then used as fuel. Then came "natural gas." This product has been known for many centuries. It was the "eternal" fuel of the Persian fire-worshippers, and has been used as fuel in China for ages. Its earliest use in this country was in 1827, when it was made to light the village of Fredonia, N. Y. Probably its first use for manufacturing purposes was by a man named Tompkins, who used it to heat salt-kettles in the Kenawha valley in 1842. Its next use for manufacturing purposes was made in a rolling mill in Armstrong county, Penn., in 1874, forty-seven years after it had been used at Fredonia, and twenty-nine years after it had been used to boil salt.

Now the use of natural gas as manufacturing fuel is universal, not alone over the spot where the gas is found, but in localities hundreds of miles away. It is one of the strangest developments of modern scientific ingenuity. That enormous battery of boilers, which was one of the most imposing spectacles of the Columbian Exhibition of 1893, whose roar was like that of Niagara, was fed by invisible fuel that came silently in pipes from a state outside of that where the great fair was held. We are left to the conclusion that the making of the coal into gas at the mine, and the shipping of it to the place of consumption through pipes, is more certain of realization than were a hundred of the early problems of American progress that have now been successful for so long that the date of their beginning is almost forgotten.

THE STEEL OF THE PRESENT.—The story of steel has now almost been told, in that general outline which is all that is possible without an extensive detail not interesting to the general reader. In it is included, of necessity, a resum of the progress, from the earliest times in this country, of the great industry which is more indicative than any other of the material growth of a nation. I now come to that time when steel began to take the place that iron had always held in structural work of every class. The differences between this structural steel and that which men have known by the name exclusively from remote ages, I have so far indicated only by reference to the well-known qualities of the latter. It now remains to describe the first.

In 1846 an American named William Kelley was the owner of an iron-works at Eddyville, Ky. It was an early era in American manufactures of all kinds, and the district was isolated, the town not having five hundred inhabitants, and the best mechanical appliances were remote.

In 1847, Kelley began, without suggestion or knowledge of any experiments going on elsewhere, to experiment in the processes now known as the "Bessemer," for the converting of iron into steel. To him occurred, as it now appears first, the idea that in the refining process fuel would be unnecessary after the iron was melted if powerful blasts of air were forced into the fluid metal. This is the basic principle of the Bessemer process. The theory was that the heat generated by the union of the oxygen of the air with the carbon of the metal, would accomplish the refining. Kelley was trying to produce malleable iron in a new, rapid and effective way. It was merely an economy in manufacture he was endeavoring to attain.

To this end he made a furnace into which passed an air-blast pipe, through which a stream of air was forced into the mass of melted metal. He produced refined iron. Following this he made what is now called a "converter," in which he could refine fifteen hundred pounds of metal in five minutes, effecting a great saving in time and fuel, and in his little establishment the old processes were thenceforth dispensed with. It was locally known as "Kelley's air-boiling process." It proved finally to be the most important, in large results, ever conceived in metallurgy. I refer to it hurriedly, and do not attempt to follow the inventor's own description of his constructions and experiments. When he heard that others in England were following the same line of experiment, he applied for a patent. He was decided to be the first inventor of the process, and a patent was granted him over Bessemer, who was a few days before him. There is no question that others were more skillful, and with better opportunities and scientific associations, in carrying out the final details, mechanical and chemical, which have completed the Kelley process for present commercial uses. Neither is there any question that this back-woods iron-making American was the first to refine iron by passing through it, while fluid, a stream of air, which is the process of making that steel which is not tool steel, and yet is steel, the now almost universal material for the making of structures; the material of the Ferris wheel, the wonderful palaces of the Columbian exposition, the sky-scrapers of Chicago, the rails, the tacks, [Footnote: In the history of Rhode Island, by Arnold, it is claimed that the first cold cut nails in the world were made by Jeremiah Wilkinson, in 1777. The process was to cut them from an old chest-lock with a pair of shears, and head them in a smith's vise. Then small nails were cut from old Spanish hoops, and headed in a vise by hand. Needles and pins were made by the same person from wire drawn by himself. Supposing this to be the beginning of the cut-nail idea, the machine for making them would still remain the actual and practical invention, since it would mark the beginning of the industry as such. The importance of the latter event may be measured by the fact that about the end of the last century there began a strong demand. In the homely farm-houses, or the little contracted shops of New England villages, the descendants of the Pilgrims toiled providently, through the long winter months, at beating into shape the little nails which play so useful a part in modern industry. A small anvil served to beat the wire or strip of iron into shape and point it; a vise worked by the foot clutched it between jaws furnished with a gauge to regulate the length, leaving a certain portion projecting, which, when beaten flat by a hammer, formed the head. This was industry, but not manufacture, for in 1890 the manufacturers of this country produced over eight hundred million pounds of iron, steel, and wire nails, representing a consumption of this absolutely indispensable manufacture for that year, at the rate of over twelve pounds for each individual inhabitant of the United States.] the fence-wire, the sheet-metal, the rails of the steam-railroads and the street-lines, the thousand things that cannot be thought of without a list, and which is a material that is furnished more cheaply than the old iron articles were for the same purposes.

The technical detail of steel-making is exceedingly interesting to students of applied science, but it is detail, the key to which is in the process mentioned; the forcing of a stream of air through a molten mass of iron. The "converter" is a huge pitcher-shaped vessel, hung upon trunnions so as to be tilted, and it is usual to admit through these trunnions, by means of a continuing pipe, the stream of air. The converters may contain ten tons or more of liquid metal at one time, which mass is converted from iron into steel at one operation.

Forty-five years ago, or less, works that could turn out fifty tons of iron in a day were very large. Now there are many that make five hundred tons of steel in the same time. Then, nearly all the work was done by hand, and men in large numbers handled the details of all processes. Now it would be impossible for human hands and strength to do the work. The steel-mill is, indeed, the most colossal combination of Steam and Steel. There are tireless arms, moved by steam, insensible alike to monstrous strains and white heat, which seize the vast ingots and carry them to and fro, handling with incredible celerity the masses that were unknown to man before the invention of the Bessemer process. And all these operations are directed and controlled by a man who stands in one place, strangely yet not inappropriately named a "pulpit," by means of the hand-gear that gives them all to him like toys.

No one who has seen a steel-mill in operation, can go away and really write a description of it; no artist or camera has ever made its portrait, yet it is the most impressive scene of the modern, the industrial, world. There is a "fervent heat," surpassing in its impressions all the descriptions of the Bible, and which destroys all doubt of fire with capacity to burn a world and "roll the heavens together as a scroll." There is a clang and clatter accompanying a marvelous order. There are clouds of steam. There are displays of sparks and glow surpassing all the pyrotechnics of art. Monstrous throats gasp for a draught of white-hot metal and take it at a gulp. Glowing masses are trundled to and fro. There are mountains of ore, disappearing in a night, and ever renewed. There is a railway system, and the huge masses are conveyed from place to place by locomotive engines. There is a water system that would supply a town. There may be miles of underground pipes bringing gas for fuel. Amid these scenes flit strong men, naked to the waist, unharmed in the red pandemonium, guiding every process, superintending every result; like other men, yet leading a life so strange that it is apparently impossible. The glowing rivers they escape; corruscating showers of flying white-hot metal do not fall upon them; the leaping, roaring, hungry, annihilating flames do not touch them; the gurgling streams of melted steel are their familiar playthings; yet they are but men.

The "rolling" of these slabs and ingots into rails is a following operation still. The continuous rail is often more than a hundred feet in length, which is cut into three or four rails of thirty feet each, and it goes through every operation that makes it a "T" rail weighing ninety pounds to the yard with the single first heat. There are trains of rolls that will take in a piece of white-hot metal weighing six tons, and send it out in a long sheet three thirty-seconds of an inch thick and nearly ten feet wide. The first steel rails made in this country were made by the Chicago Rolling Mill Company, in May, 1865. Only six rails were then made, and these were laid in the tracks of the Chicago and North Western Railroad. It is said they lasted over ten years. The first nails, or tacks, were made of steel at Bridgewater, Mass., at about the same date.

Some thirty years ago there were but two Bessemer converters in the United States, and the manufacture of steel did not reach then five hundred tons per annum. In 1890 the product was more than five million tons.

In 1872 the price of steel was one hundred and eighty-six dollars per gross ton. It can be purchased now at varying prices less than thirty dollars per ton. The consumption of seventy millions of people is so great that it is difficult to imagine how so enormous a mass of almost imperishable material can be absorbed, and the latest figures show a consumption greatly in excess of those mentioned as the sum of manufactures.

We turn again for the comparison without which all figures are valueless to the good year 1643, when the "General court" passed a resolve commending the great progress made in the manufacture of iron which they had licensed two years before, and granted the company still further privileges and immunities upon condition that it should furnish the people "with barre iron of all sorts for their use at not exceedynge twenty pounds per ton." We recall the first little piece of hollow ware made in America. We remember how old the old world is said to be and how long the tribes of men have plodded upon it, and then the picture appears of the progress that has grown almost under our eyes. The real Age of Steel began in 1865. It is not yet thirty years old. By comparison we are impressed with the fact that the real history of the metal is compressed into less than half an ordinary lifetime.


There is a sense in which electricity may be said to be the youngest of the sciences. Its modern development has been startling. Its phenomena appear on every hand. It is almost literally true that the lighting has become the servant of man.

But it is also the oldest among modern sciences. Its manifestations have been studied for centuries. So old is its story that it has some of the interest of a mediaeval romance; a romance that is true. Steam is gross, material, understandable, noisy. Its action is entirely comprehensible. The explosives, gunpowder, begriming the nations in all the wars since 1350, nitroglycerine, oxygen and hydrogen in all the forms of their combination, seem to be gross and material, the natural, though ferocious, servants of mankind. But electricity floats ethereal, apart, a subtle essence, shining in the changing splendors of the aurora yet existent in the very paper upon which one writes; mysteriously everywhere; silent, unseen, odorless, untouchable, a power capable of exemplifying the highest majesty of universal nature, or of lighting the faint glow of the fragile insect that flies in the twilight of a summer night. Obedient as it has now been made by the ingenuity of modern man, docile as it may seem, obeying known laws that were discovered, not made, it yet remains shadowy, mysterious, impalpable, intangible, dangerous. It is its own avenger of the daring ingenuity that has controlled it. Touch it, and you die.

Electricity was as existent when the splendid scenes described in Genesis were enacted before the poet's eye as it is now, and was entirely the same. Its very name is old. Before there were men there were trees. Some of these exuded gum, as trees do now, and this gum found a final resting place in the sea, either by being carried thither by the currents of the streams beside which those trees grew, or by the land on which they stood being submerged in some of the ancient changes and convulsions to which the world has been frequently subject. In the lapse of ages this gum, being indestructible in water, became a fossil beneath the waves, and being in later times cast up by storms on the shores of the Baltic and other seas, was found and gathered by men, and being beautiful, finally came to be cut into various forms and used as jewelry. One has but to examine his pipe-stem, or a string of yellow beads, to know it even now. It is amber. The ancient Greeks knew and used it as we do, and without any reference to what we now call "electricity" their name for it was ELEKTRON. The earliest mention of it is by Homer, a poet whose personality is so hidden in the mists of far antiquity that his actual existence as a single person has been doubted, and he mentions it in connection with a necklace made of it.

But very early in human history, at least six hundred years before Christ, this elektron had been found to possess a peculiar property that was imagined to belong to it alone. It mysteriously attracted light bodies to it after it had been rubbed. Thales, the Franklin of his remote time, was the man who is said to have discovered this peculiar and mysterious quality of the yellow gum, and if it be true, to him must be conceded the unwitting discovery of electricity. It was the first step in a science that usurps all the prerogatives of the ancient gods. He recorded his discovery, and was impressed with awe by it, and accounted for the phenomenon he had observed by ascribing to the dull fossil a living soul. That is the unconscious impression still, after twenty-five hundred years have passed since Thales died; that hidden in the heart of electrical phenomena there is a weird sentience; what a Greek would consider something divine and immortal apart from matter. But neither Thales, nor Theophrastus, nor Pliny the elder, nor any ancient, could conceive of a fact but dimly guessed until the day of Franklin; that this secret of the silent amber was also that of the thunder-cloud, that the essence that drew to it a floating filament is also that which rends an oak, that had splintered their temples and statues, and had not spared even the image of Jupiter Tonans himself. The spectral lights which hung upon the masts of the ancient galleys of the Mediterranean were named Castor and Pollux, not electricity. Absolutely no discovery was made, though the religion of ancient Etruria was chiefly the worship of a spirit by them seen, but unknown; to us electrical science; a science chained, yet really unknown and still feared though chained. It is the story of this servitude only that is capable of being told, and the first weak bands were a hundred and forty-six years in forging; from the Englishman Gilbert's "De Magnete," to Franklin's Kite.

During all this time, and to a great degree long after, electricity was a scientific toy. Experiences in the sparkling of the fur of cats, the knowledge that there were fishes that possessed a mysterious paralyzing power, and various common phenomena all attributable to some unknown common cause, did not greatly increase the sum of actual knowledge of the subject. There was no divination of what the future would bring, and not the least conception of actual and impending possibilities. When, finally, the greatest thinkers of their times began to investigate; when Boyle began to experiment, and even the transcendent genius of Newton stooped to enquiry; from the days of those giants down to those of the American provincial postmaster, Benjamin Franklin, a period of some seventy years, almost all the knowledge obtained was only useful in indicating how to experiment still further. So small was the knowledge, so aimless the long experimenting, that the discovery that not amber only, but other substances as well, possessed the electric quality when rubbed, was a notable advance in knowledge. Later, in 1792, it was found by Gray that certain substances possessed the power of carrying; "conducting" as we now term it; the mysterious fluid from one substance to another; from place to place. This discovery constituted an actual epoch in the history of the science, and justly, since this small beginning with a wet string and a cylinder of glass or a globe of sulphur was the first unwitting illustration of the net-work of wires now hanging all over the world. The next step was to find that all substances were not alike in a power to conduct a current; i.e., that there were "conductors" and "non-conductors," and all varying grades and powers between. The next discovery was that there were, as was then imagined, several kinds of electricity. This conclusion was incorrect, and its use was to lead at last to the discovery, by Franklin, that the many kinds were but two, and even these not kinds, but qualities, present always in the unchanging essence that is everywhere, and which are known to us now by the names that Franklin gave them; the positive and negative currents; one always present with the other, and in every phenomenon known to electrical science.

Probably the first machine ever contrived for producing an electric current was made by a monk, a Scotch Benedictine named Gordon who lived at Erfurt, in Saxony. I shall have occasion, hereafter, to describe other machines for the same purpose, and this first contrivance is of interest by comparison. It was a cylinder of glass about eight inches long, with a wooden shaft in the center, the ends of which were passed through holes in side-pieces, and it is said to have been operated by winding a string around the shaft and drawing the ends of the string back and forth alternately.

The Franklinic machine, the modern glass disc fitted with combs, rubbers, bands and cranks, is nothing more in principle or manner of action than the first crude arrangement of the monk of Erfurt.

All these experiments, and all that for many years followed, were made in electricity produced by friction; by rubbing some body like glass, sulphur or rosin. Many men took part in producing effects that were almost meaningless to them—the preliminaries to final results for us. Improved electrical machines were made, all seeming childish and inadequate now, and all wonderful in their day. There is a long list of immortal names connected with the slow development of the science, and among their experiments the seventeenth century passed away. Dufaye and the Abbe Nollet worked together about 1730, and mutually surprised each other daily. Guericke, better known as the inventor of the air-pump, made a sulphur-ball machine, often claimed to have been the first. Hawkesbee constructed a glass machine that was an improvement over that of Guericke. Stephen Gray unfolded the leading principles of the science, but without any understanding of their results as we now understand them. The next advance was made in finding a way to hold some of the electricity when gathered, and the toy which we know as the Leyden Jar surprised the scientific world. Its inventor, Professor Muschenbrock, wrote an account of it to Raumur, and lacks language to express the terror into which his own experiments had thrown him. He had unwittingly accumulated, and had accidentally discharged, and had, for the first time in human experience, felt something of the shock the modern lineman dreads because it means death. He had toiled until he held the baleful genie in a glass vessel partially filled with water, and the sprite could not be seen. Accidentally he made a connection between the two surfaces of the jar, and declared that he did not recover from the experience for two days, and that nothing could induce him to repeat it. He had been touched by the lightning, and had not known it. [Footnote: The Leyden Jar has little place in the usefulness of modern electricity, and has no relationship with the modern so-called "Storage" Battery.]

Then began the fakerism which attached itself to the science of electricity, and that has only measurably abandoned it in very late times. Itinerant electricians began to infest the cities of Europe, claiming medicinal and almost supernatural virtues for the mysterious shock of the Leyden Vial, and showing to gaping multitudes the quick and flashing blue spark which was, though no man knew it then, a miniature imitation of the bolt of heaven. That fact, verging as closely upon the sublimest power of nature as a man may venture to and live, was not even suspected until Franklin had invented a battery of such jars, and had performed hundreds of experiments therewith that finally established in his acute, though prosaic, mind the identity of his puny spark with that terrific flash that, until that time, had been regarded by all mankind as a direct and intentional expression of the power of Almighty God.

Thus Franklin came into the field. He was an investigator who brought to his aid a singular capacity possessed by the very few; the capacity for an unbiased looking for the hidden reasons of things. There was no field too sacred or too old for his prying investigations and his private conclusions. He was, as much as any man ever is, an original thinker. He knew of all the electrical experiments of others, and they produced in his mind conclusions distinctly his own. He was, upon topics pertaining to the field of reason, experience and common sense, the clearest and most vigorous writer of his time save one, and such conclusions as he arrived at he knew how to promulgate and explain. All that Franklin discovered would but add to the tedium of the subject of electricity now, but from his time definitely dates the knowledge that of electricity, in all its developments, there is really but one kind, though for convenience sake we may commonly speak of two, or even more. He first gave the names by which they are still known to the two qualities of one current; a name of convenience only. He knew first a fact that still puzzles inquiry, and is still largely unknown—that electricity is not created, produced, manufactured, by any human means, and that all we may do, then or now, is to gather it from its measureless diffusion in the air, the world, or the spaces of the wide creation, and that, like "heat" and "cold," it is a relative term. He demonstrated that any body which has electricity gives it to any other body that has at the moment less. Before he had actually tried that celebrated experiment which is alone sufficient to give him place among the immortals, he had declared the theory upon which he made it to be true, and by reasoning, in an age that but dimly understood the force and conditions of inductive reason, had proved that lightning is but an electric spark. It seems hardly necessary to add that his theories were ridiculed by the most intelligent scientists of his time, and scoffed at even by the countrymen of Newton and Davy, the members of the Royal Society of England. Franklin was a provincial American, and had, in other fields than electricity, troubled the British placidity.

1  2  3  4     Next Part
Home - Random Browse