The Story of the Heavens
by Robert Stawell Ball
1  2  3  4  5  6  7  8  9  10  11  12  13     Next Part
Home - Random Browse

Transcriber's Note

The punctuation and spelling from the original text have been faithfully preserved. Only obvious typographical errors have been corrected.





Author of "Star-Land"







I have to acknowledge the kind aid which I have received in the preparation of this book.

Mr. Nasmyth has permitted me to use some of the beautiful drawings of the Moon, which have appeared in the well-known work published by him in conjunction with Mr. Carpenter. To this source I am indebted for Plates VII., VIII., IX., X., and Figs. 28, 29, 30.

Professor Pickering has allowed me to copy some of the drawings made at Harvard College Observatory by Mr. Trouvelot, and I have availed myself of his kindness for Plates I., IV., XII., XV.

I am indebted to Professor Langley for Plate II., to Mr. De la Rue for Plates III. and XIV., to Mr. T.E. Key for Plate XVII., to Professor Schiaparelli for Plate XVIII., to the late Professor C. Piazzi Smyth for Fig. 100, to Mr. Chambers for Fig. 7, which has been borrowed from his "Handbook of Descriptive Astronomy," to Dr. Stoney for Fig. 78, and to Dr. Copeland and Dr. Dreyer for Fig. 72. I have to acknowledge the valuable assistance derived from Professor Newcomb's "Popular Astronomy," and Professor Young's "Sun." In revising the volume I have had the kind aid of the Rev. Maxwell Close.

I have also to thank Dr. Copeland and Mr. Steele for their kindness in reading through the entire proofs; while I have also occasionally availed myself of the help of Mr. Cathcart.




I have taken the opportunity in the present edition to revise the work in accordance with the recent progress of astronomy. I am indebted to the Royal Astronomical Society for the permission to reproduce some photographs from their published series, and to Mr. Henry F. Griffiths, for beautiful drawings of Jupiter, from which Plate XI. was prepared.


CAMBRIDGE, 1st May, 1900.














X. MARS 208





















I. The Planet Saturn Frontispiece

II. A Typical Sun-spot To face page 9

A. The Sun " " 44

III. Spots and Faculae on the Sun " " 37

IV. Solar Prominences or Flames " " 57

V. The Solar Corona " " 62

VI. Chart of the Moon's Surface " " 81

B. Portion of the Moon " " 88

VII. The Lunar Crater Triesnecker " " 93

VIII. A Normal Lunar Crater " " 97

IX. The Lunar Crater Plato " " 102

X. The Lunar Crater Tycho " " 106

XI. The Planet Jupiter " " 254

XII. Coggia's Comet " " 340

C. Comet A., 1892, 1 Swift " " 358

XIII. Spectra of the Sun and of three Stars " " 47

D. The Milky Way, near Messier II. " " 462

XIV. The Great Nebula in Orion " " 466

XV. The Great Nebula in Andromeda " " 468

E. Nebulae in the Pleiades " " 472

F. o Centauri " " 474

XVI. Nebulae observed with Lord Rosse's Telescope " " 476

XVII. The Comet of 1882 " " 357

XVIII. Schiaparelli's Map of Mars " " 221



1. Principle of the Refracting Telescope 11

2. Dome of the South Equatorial at Dunsink Observatory, Co. Dublin 12

3. Section of the Dome of Dunsink Observatory 13

4. The Telescope at Yerkes Observatory, Chicago 15

5. Principle of Herschel's Reflecting Telescope 16

6. South Front of the Yerkes Observatory, Chicago 17

7. Lord Rosse's Telescope 18

8. Meridian Circle 20

9. The Great Bear 27

10. Comparative Sizes of the Earth and the Sun 30

11. The Sun, photographed September 22, 1870 33

12. Photograph of the Solar Surface 35

13. An ordinary Sun-spot 36

14. Scheiner's Observations on Sun-spots 38

15. Zones on the Sun's Surface in which Spots appear 39

16. Texture of the Sun and a small Spot 43

17. The Prism 45

18. Dispersion of Light by the Prism 46

19. Prominences seen in Total Eclipses 53

20. View of the Corona in a Total Eclipse 62

21. View of Corona during Eclipse of January 22, 1898 63

22. The Zodiacal Light in 1874 69

23. Comparative Sizes of the Earth and the Moon 73

24. The Moon's Path around the Sun 76

25. The Phases of the Moon 76

26. The Earth's Shadow and Penumbra 78

27. Key to Chart of the Moon (Plate VI.) 81

28. Lunar Volcano in Activity: Nasmyth's Theory 97

29. Lunar Volcano: Subsequent Feeble Activity 97

30. " " Formation of the Level Floor by Lava 98

31. Orbits of the Four Interior Planets 115

32. The Earth's Movement 116

33. Orbits of the Four Giant Planets 117

34. Apparent Size of the Sun from various Planets 118

35. Comparative Sizes of the Planets 119

36. Illustration of the Moon's Motion 130

37. Drawing an Ellipse 137

38. Varying Velocity of Elliptic Motion 140

39. Equal Areas in Equal Times 141

40. Transit of the Planet of Romance 153

41. Variations in Phase and apparent Size of Mercury 160

42. Mercury as a Crescent 161

43. Venus, May 29, 1889 170

44. Different Aspects of Venus in the Telescope 171

45. Venus on the Sun at the Transit of 1874 177

46. Paths of Venus across the Sun in the Transits of 1874 and 1882 179

47. A Transit of Venus, as seen from Two Localities 183

48. Orbits of the Earth and of Mars 210

49. Apparent Movements of Mars in 1877 212

50. Relative Sizes of Mars and the Earth 216

51, 52. Drawings of Mars 217

53. Elevations and Depressions on the Terminator of Mars 217

54. The Southern Polar Cap on Mars 217

55. The Zone of Minor Planets between Mars and Jupiter 234

56. Relative Dimensions of Jupiter and the Earth 246

57-60. The Occultation of Jupiter 255

61. Jupiter and his Four Satellites 258

62. Disappearances of Jupiter's Satellites 259

63. Mode of Measuring the Velocity of Light 264

64. Saturn 270

65. Relative Sizes of Saturn and the Earth 273

66. Method of Measuring the Rotation of Saturn's Rings 288

67. Method of Measuring the Rotation of Saturn's Rings 289

68. Transit of Titan and its Shadow 295

69. Parabolic Path of a Comet 339

70. Orbit of Encke's Comet 346

71. Tail of a Comet directed from the Sun 363

72. Bredichin's Theory of Comets' Tails 366

73. Tails of the Comet of 1858 367

74. The Comet of 1744 368

75. The Path of the Fireball of November 6, 1869 375

76. The Orbit of a Shoal of Meteors 378

77. Radiant Point of Shooting Stars 381

78. The History of the Leonids 385

79. Section of the Chaco Meteorite 398

80. The Great Bear and Pole Star 410

81. The Great Bear and Cassiopeia 411

82. The Great Square of Pegasus 413

83. Perseus and its Neighbouring Stars 415

84. The Pleiades 416

85. Orion, Sirius, and Neighbouring Stars 417

86. Castor and Pollux 418

87. The Great Bear and the Lion 419

88. Booetes and the Crown 420

89. Virgo and Neighbouring Constellations 421

90. The Constellation of Lyra 422

91. Vega, the Swan, and the Eagle 423

92. The Orbit of Sirius 426

93. The Parallactic Ellipse 444

94. 61 Cygni and the Comparison Stars 447

95. Parallax in Declination of 61 Cygni 450

96. Globular Cluster in Hercules 463

97. Position of the Great Nebula in Orion 466

98. The Multiple Star th Orionis 467

99. The Nebula N.G.C. 1499 471

100. Star-Map, showing Precessional Movement 493

101. Illustration of the Motion of Precession 495



"The Story of the Heavens" is the title of our book. We have indeed a wondrous story to narrate; and could we tell it adequately it would prove of boundless interest and of exquisite beauty. It leads to the contemplation of grand phenomena in nature and great achievements of human genius.

Let us enumerate a few of the questions which will be naturally asked by one who seeks to learn something of those glorious bodies which adorn our skies: What is the Sun—how hot, how big, and how distant? Whence comes its heat? What is the Moon? What are its landscapes like? How does our satellite move? How is it related to the earth? Are the planets globes like that on which we live? How large are they, and how far off? What do we know of the satellites of Jupiter and of the rings of Saturn? How was Uranus discovered? What was the intellectual triumph which brought the planet Neptune to light? Then, as to the other bodies of our system, what are we to say of those mysterious objects, the comets? Can we discover the laws of their seemingly capricious movements? Do we know anything of their nature and of the marvellous tails with which they are often decorated? What can be told about the shooting-stars which so often dash into our atmosphere and perish in a streak of splendour? What is the nature of those constellations of bright stars which have been recognised from all antiquity, and of the host of smaller stars which our telescopes disclose? Can it be true that these countless orbs are really majestic suns, sunk to an appalling depth in the abyss of unfathomable space? What have we to tell of the different varieties of stars—of coloured stars, of variable stars, of double stars, of multiple stars, of stars that seem to move, and of stars that seem at rest? What of those glorious objects, the great star clusters? What of the Milky Way? And, lastly, what can we learn of the marvellous nebulae which our telescopes disclose, poised at an immeasurable distance? Such are a few of the questions which occur when we ponder on the mysteries of the heavens.

The history of Astronomy is, in one respect, only too like many other histories. The earliest part of it is completely and hopelessly lost. The stars had been studied, and some great astronomical discoveries had been made, untold ages before those to which our earliest historical records extend. For example, the observation of the apparent movement of the sun, and the discrimination between the planets and the fixed stars, are both to be classed among the discoveries of prehistoric ages. Nor is it to be said that these achievements related to matters of an obvious character. Ancient astronomy may seem very elementary to those of the present day who have been familiar from childhood with the great truths of nature, but, in the infancy of science, the men who made such discoveries as we have mentioned must have been sagacious philosophers.

Of all the phenomena of astronomy the first and the most obvious is that of the rising and the setting of the sun. We may assume that in the dawn of human intelligence these daily occurrences would form one of the first problems to engage the attention of those whose thoughts rose above the animal anxieties of everyday existence. A sun sets and disappears in the west. The following morning a sun rises in the east, moves across the heavens, and it too disappears in the west; the same appearances recur every day. To us it is obvious that the sun, which appears each day, is the same sun; but this would not seem reasonable to one who thought his senses showed him that the earth was a flat plain of indefinite extent, and that around the inhabited regions on all sides extended, to vast distances, either desert wastes or trackless oceans. How could that same sun, which plunged into the ocean at a fabulous distance in the west, reappear the next morning at an equally great distance in the east? The old mythology asserted that after the sun had dipped in the western ocean at sunset (the Iberians, and other ancient nations, actually imagined that they could hear the hissing of the waters when the glowing globe was plunged therein), it was seized by Vulcan and placed in a golden goblet. This strange craft with its astonishing cargo navigated the ocean by a northerly course, so as to reach the east again in time for sunrise the following morning. Among the earlier physicists of old it was believed that in some manner the sun was conveyed by night across the northern regions, and that darkness was due to lofty mountains, which screened off the sunbeams during the voyage.

In the course of time it was thought more rational to suppose that the sun actually pursued his course below the solid earth during the course of the night. The early astronomers had, moreover, learned to recognise the fixed stars. It was noticed that, like the sun, many of these stars rose and set in consequence of the diurnal movement, while the moon obviously followed a similar law. Philosophers thus taught that the various heavenly bodies were in the habit of actually passing beneath the solid earth.

By the acknowledgment that the whole contents of the heavens performed these movements, an important step in comprehending the constitution of the universe had been decidedly taken. It was clear that the earth could not be a plane extending to an indefinitely great distance. It was also obvious that there must be a finite depth to the earth below our feet. Nay, more, it became certain that whatever the shape of the earth might be, it was at all events something detached from all other bodies, and poised without visible support in space. When this discovery was first announced it must have appeared a very startling truth. It was so difficult to realise that the solid earth on which we stand reposed on nothing! What was to keep it from falling? How could it be sustained without tangible support, like the legendary coffin of Mahomet? But difficult as it may have been to receive this doctrine, yet its necessary truth in due time commanded assent, and the science of Astronomy began to exist. The changes of the seasons and the recurrence of seed-time and harvest must, from the earliest times, have been associated with certain changes in the position of the sun. In the summer at mid-day the sun rises high in the heavens, in the winter it is always low. Our luminary, therefore, performs an annual movement up and down in the heavens, as well as a diurnal movement of rising and setting. But there is a third species of change in the sun's position, which is not quite so obvious, though it is still capable of being detected by a few careful observations, if combined with a philosophical habit of reflection. The very earliest observers of the stars can hardly have failed to notice that the constellations visible at night varied with the season of the year. For instance, the brilliant figure of Orion, though so well seen on winter nights, is absent from the summer skies, and the place it occupied is then taken by quite different groups of stars. The same may be said of other constellations. Each season of the year can thus be characterised by the sidereal objects that are conspicuous by night. Indeed, in ancient days, the time for commencing the cycle of agricultural occupations was sometimes indicated by the position of the constellations in the evening.

By reflecting on these facts the early astronomers were enabled to demonstrate the apparent annual movement of the sun. There could be no rational explanation of the changes in the constellations with the seasons, except by supposing that the place of the sun was altering, so as to make a complete circuit of the heavens in the course of the year. This movement of the sun is otherwise confirmed by looking at the west after sunset, and watching the stars. As the season progresses, it may be noticed each evening that the constellations seem to sink lower and lower towards the west, until at length they become invisible from the brightness of the sky. The disappearance is explained by the supposition that the sun appears to be continually ascending from the west to meet the stars. This motion is, of course, not to be confounded with the ordinary diurnal rising and setting, in which all the heavenly bodies participate. It is to be understood that besides being affected by the common motion our luminary has a slow independent movement in the opposite direction; so that though the sun and a star may set at the same time to-day, yet since by to-morrow the sun will have moved a little towards the east, it follows that the star must then set a few minutes before the sun.[1]

The patient observations of the early astronomers enabled the sun's track through the heavens to be ascertained, and it was found that in its circuit amid the stars and constellations our luminary invariably followed the same path. This is called the ecliptic, and the constellations through which it passes form a belt around the heavens known as the zodiac. It was anciently divided into twelve equal portions or "signs," so that the stages on the sun's great journey could be conveniently indicated. The duration of the year, or the period required by the sun to run its course around the heavens, seems to have been first ascertained by astronomers whose names are unknown. The skill of the early Oriental geometers was further evidenced by their determination of the position of the ecliptic with regard to the celestial equator, and by their success in the measurement of the angle between these two important circles on the heavens.

The principal features of the motion of the moon have also been noticed with intelligence at an antiquity more remote than history. The attentive observer perceives the important truth that the moon does not occupy a fixed position in the heavens. During the course of a single night the fact that the moon has moved from west to east across the heavens can be perceived by noting its position relatively to adjacent stars. It is indeed probable that the motion of the moon was a discovery prior to that of the annual motion of the sun, inasmuch as it is the immediate consequence of a simple observation, and involves but little exercise of any intellectual power. In prehistoric times also, the time of revolution of the moon had been ascertained, and the phases of our satellite had been correctly attributed to the varying aspect under which the sun-illuminated side is turned towards the earth.

But we are far from having exhausted the list of great discoveries which have come down from unknown antiquity. Correct explanations had been given of the striking phenomenon of a lunar eclipse, in which the brilliant surface is plunged temporarily into darkness, and also of the still more imposing spectacle of a solar eclipse, in which the sun itself undergoes a partial or even a total obscuration. Then, too, the acuteness of the early astronomers had detected the five wandering stars or planets: they had traced the movements of Mercury and Venus, Mars, Jupiter, and Saturn. They had observed with awe the various configurations of these planets: and just as the sun, and in a lesser degree the moon, were intimately associated with the affairs of daily life, so in the imagination of these early investigators the movements of the planets were thought to be pregnant with human weal or human woe. At length a certain order was perceived to govern the apparently capricious movements of the planets. It was found that they obeyed certain laws. The cultivation of the science of geometry went hand in hand with the study of astronomy: and as we emerge from the dim prehistoric ages into the historical period, we find that the theory of the phenomena of the heavens possessed already some degree of coherence.

Ptolemy, following Pythagoras, Plato, and Aristotle, acknowledged that the earth's figure was globular, and he demonstrated it by the same arguments that we employ at the present day. He also discerned how this mighty globe was isolated in space. He admitted that the diurnal movement of the heavens could be accounted for by the revolution of the earth upon its axis, but unfortunately he assigned reasons for the deliberate rejection of this view. The earth, according to him, was a fixed body; it possessed neither rotation round an axis nor translation through space, but remained constantly at rest in what he supposed to be the centre of the universe. According to Ptolemy's theory the sun and the moon moved in circular orbits around the earth in the centre. The explanation of the movements of the planets he found to be more complicated, because it was necessary to account for the fact that a planet sometimes advanced and that it sometimes retrograded. The ancient geometers refused to believe that any movement, except revolution in a circle, was possible for a celestial body: accordingly a contrivance was devised by which each planet was supposed to revolve in a circle, of which the centre described another circle around the earth.

Although the Ptolemaic doctrine is now known to be framed on quite an extravagant estimate of the importance of the earth in the scheme of the heavens, yet it must be admitted that the apparent movements of the celestial bodies can be thus accounted for with considerable accuracy. This theory is described in the great work known as the "Almagest," which was written in the second century of our era, and was regarded for fourteen centuries as the final authority on all questions of astronomy.

Such was the system of Astronomy which prevailed during the Middle Ages, and was only discredited at an epoch nearly simultaneous with that of the discovery of the New World by Columbus. The true arrangement of the solar system was then expounded by Copernicus in the great work to which he devoted his life. The first principle established by these labours showed the diurnal movement of the heavens to be due to the rotation of the earth on its axis. Copernicus pointed out the fundamental difference between real motions and apparent motions; he proved that the appearances presented in the daily rising and setting of the sun and the stars could be accounted for by the supposition that the earth rotated, just as satisfactorily as by the more cumbrous supposition of Ptolemy. He showed, moreover, that the latter supposition must attribute an almost infinite velocity to the stars, so that the rotation of the entire universe around the earth was clearly a preposterous supposition. The second great principle, which has conferred immortal glory on Copernicus, assigned to the earth its true position in the universe. Copernicus transferred the centre, about which all the planets revolve, from the earth to the sun; and he established the somewhat humiliating truth, that our earth is merely a planet pursuing a track between the paths of Venus and of Mars, and subordinated like all the other planets to the supreme sway of the Sun.

This great revolution swept from astronomy those distorted views of the earth's importance which arose, perhaps not unnaturally, from the fact that we happen to be domiciled on that particular planet. The achievements of Copernicus were soon to be followed by the invention of the telescope, that wonderful instrument by which the modern science of astronomy has been created. To the consideration of this important subject we shall devote the first chapter of our book.



Early Astronomical Observations—The Observatory of Tycho Brahe—The Pupil of the Eye—Vision of Faint Objects—The Telescope—The Object-Glass—Advantages of Large Telescopes—The Equatorial—The Observatory—The Power of a Telescope—Reflecting Telescopes—Lord Rosse's Great Reflector at Parsonstown—How the mighty Telescope is used—Instruments of Precision—The Meridian Circle—The Spider Lines—Delicacy of pointing a Telescope—Precautions necessary in making Observations—The Ideal Instrument and the Practical One—The Elimination of Error—Greenwich Observatory—The ordinary Opera-Glass as an Astronomical Instrument—The Great Bear—Counting the Stars in the Constellation—How to become an Observer.

The earliest rudiments of the Astronomical Observatory are as little known as the earliest discoveries in astronomy itself. Probably the first application of instrumental observation to the heavenly bodies consisted in the simple operation of measuring the shadow of a post cast by the sun at noonday. The variations in the length of this shadow enabled the primitive astronomers to investigate the apparent movements of the sun. But even in very early times special astronomical instruments were employed which possessed sufficient accuracy to add to the amount of astronomical knowledge, and displayed considerable ingenuity on the part of the designers.

Professor Newcomb[2] thus writes: "The leader was Tycho Brahe, who was born in 1546, three years after the death of Copernicus. His attention was first directed to the study of astronomy by an eclipse of the sun on August 21st, 1560, which was total in some parts of Europe. Astonished that such a phenomenon could be predicted, he devoted himself to a study of the methods of observation and calculation by which the prediction was made. In 1576 the King of Denmark founded the celebrated observatory of Uraniborg, at which Tycho spent twenty years assiduously engaged in observations of the positions of the heavenly bodies with the best instruments that could then be made. This was just before the invention of the telescope, so that the astronomer could not avail himself of that powerful instrument. Consequently, his observations were superseded by the improved ones of the centuries following, and their celebrity and importance are principally due to their having afforded Kepler the means of discovering his celebrated laws of planetary motion."

The direction of the telescope to the skies by Galileo gave a wonderful impulse to the study of the heavenly bodies. This extraordinary man is prominent in the history of astronomy, not alone for his connection with this supreme invention, but also for his achievements in the more abstract parts of astronomy. He was born at Pisa in 1564, and in 1609 the first telescope used for astronomical observation was constructed. Galileo died in 1642, the year in which Newton was born. It was Galileo who laid with solidity the foundations of that science of Dynamics, of which astronomy is the most splendid illustration; and it was he who, by promulgating the doctrines taught by Copernicus, incurred the wrath of the Inquisition.

The structure of the human eye in so far as the exquisite adaptation of the pupil is concerned presents us with an apt illustration of the principle of the telescope. To see an object, it is necessary that the light from it should enter the eye. The portal through which the light is admitted is the pupil. In daytime, when the light is brilliant, the iris decreases the size of the pupil, and thus prevents too much light from entering. At night, or whenever the light is scarce, the eye often requires to grasp all it can. The pupil then expands; more and more light is admitted according as the pupil grows larger. The illumination of the image on the retina is thus effectively controlled in accordance with the requirements of vision.

A star transmits to us its feeble rays of light, and from those rays the image is formed. Even with the most widely-opened pupil, it may, however, happen that the image is not bright enough to excite the sensation of vision. Here the telescope comes to our aid: it catches all the rays in a beam whose original dimensions were far too great to allow of its admission through the pupil. The action of the lenses concentrates those rays into a stream slender enough to pass through the small opening. We thus have the brightness of the image on the retina intensified. It is illuminated with nearly as much light as would be collected from the same object through a pupil as large as the great lenses of the telescope.

In astronomical observatories we employ telescopes of two entirely different classes. The more familiar forms are those known as refractors, in which the operation of condensing the rays of light is conducted by refraction. The character of the refractor is shown in Fig. 1. The rays from the star fall upon the object-glass at the end of the telescope, and on passing through they become refracted into a converging beam, so that all intersect at the focus. Diverging from thence, the rays encounter the eye-piece, which has the effect of restoring them to parallelism. The large cylindrical beam which poured down on the object-glass has been thus condensed into a small one, which can enter the pupil. It should, however, be added that the composite nature of light requires a more complex form of object-glass than the simple lens here shown. In a refracting telescope we have to employ what is known as the achromatic combination, consisting of one lens of flint glass and one of crown glass, adjusted to suit each other with extreme care.

The appearance of an astronomical observatory, designed to accommodate an instrument of moderate dimensions, is shown in the adjoining figures. The first (Fig. 2) represents the dome erected at Dunsink Observatory for the equatorial telescope, the object-glass of which was presented to the Board of Trinity College, Dublin, by the late Sir James South. The main part of the building is a cylindrical wall, on the top of which reposes a hemispherical roof. In this roof is a shutter, which can be opened so as to allow the telescope in the interior to obtain a view of the heavens. The dome is capable of revolving so that the opening may be turned towards that part of the sky where the object happens to be situated. The next view (Fig. 3) exhibits a section through the dome, showing the machinery by which the attendant causes it to revolve, as well as the telescope itself. The eye of the observer is placed at the eye-piece, and he is represented in the act of turning a handle, which has the power of slowly moving the telescope, in order to adjust the instrument accurately on the celestial body which it is desired to observe. The two lenses which together form the object-glass of this instrument are twelve inches in diameter, and the quality of the telescope mainly depends on the accuracy with which these lenses have been wrought. The eye-piece is a comparatively simple matter. It consists merely of one or two small lenses; and various eye-pieces can be employed, according to the magnifying power which may be desired. It is to be observed that for many purposes of astronomy high magnifying powers are not desirable. There is a limit, too, beyond which the magnification cannot be carried with advantage. The object-glass can only collect a certain quantity of light from the star; and if the magnifying power be too great, this limited amount of light will be thinly dispersed over too large a surface, and the result will be found unsatisfactory. The unsteadiness of the atmosphere still further limits the extent to which the image may be advantageously magnified, for every increase of power increases in the same degree the atmospheric disturbance.

A telescope mounted in the manner here shown is called an equatorial. The convenience of this peculiar style of supporting the instrument consists in the ease with which the telescope can be moved so as to follow a star in its apparent journey across the sky. The necessary movements of the tube are given by clockwork driven by a weight, so that, once the instrument has been correctly pointed, the star will remain in the observer's field of view, and the effect of the apparent diurnal movement will be neutralised. The last refinement in this direction is the application of an electrical arrangement by which the driving of the instrument is controlled from the standard clock of the observatory.

The power of a refracting telescope—so far as the expression has any definite meaning—is to be measured by the diameter of its object-glass. There has, indeed, been some honourable rivalry between the various civilised nations as to which should possess the greatest refracting telescope. Among the notable instruments that have been successfully completed is that erected in 1881 by Sir Howard Grubb, of Dublin, at the splendid observatory at Vienna. Its dimensions may be estimated from the fact that the object-glass is two feet and three inches in diameter. Many ingenious contrivances help to lessen the inconvenience incident to the use of an instrument possessing such vast proportions. Among them we may here notice the method by which the graduated circles attached to the telescope are brought within view of the observer. These circles are necessarily situated at parts of the instrument which lie remote from the eye-piece where the observer is stationed. The delicate marks and figures are, however, easily read from a distance by a small auxiliary telescope, which, by suitable reflectors, conducts the rays of light from the circles to the eye of the observer.

Numerous refracting telescopes of exquisite perfection have been produced by Messrs. Alvan Clark, of Cambridgeport, Boston, Mass. One of their most famous telescopes is the great Lick Refractor now in use on Mount Hamilton in California. The diameter of this object-glass is thirty-six inches, and its focal length is fifty-six feet two inches. A still greater effort has recently been made by the same firm in the refractor of forty inches aperture for the Yerkes Observatory of the University of Chicago. The telescope, which is seventy-five feet in length, is mounted under a revolving dome ninety feet in diameter, and in order to enable the observer to reach the eye-piece without using very large step-ladders, the floor of the room can be raised and lowered through a range of twenty-two feet by electric motors. This is shown in Fig. 4, while the south front of the Yerkes Observatory is represented in Fig. 6.

Within the last few years two fine telescopes have been added to the instrumental equipment of the Royal Observatory, Greenwich, both by Sir H. Grubb. One of these, containing a 28-inch object-glass, has been erected on a mounting originally constructed for a smaller instrument by Sir G. Airy. The other, presented by Sir Henry Thompson, is of 26 inches aperture, and is adapted for photographic work.

There is a limit to the size of the refractor depending upon the material of the object-glass. Glass manufacturers seem to experience unusual difficulties in their attempts to form large discs of optical glass pure enough and uniform enough to be suitable for telescopes. These difficulties are enhanced with every increase in the size of the discs, so that the cost has a tendency to increase at a very much greater rate. It may be mentioned in illustration that the price paid for the object-glass of the Lick telescope exceeded ten thousand pounds.

There is, however, an alternative method of constructing a telescope, in which the difficulty we have just mentioned does not arise. The principle of the simplest form of reflector is shown in Fig. 5, which represents what is called the Herschelian instrument. The rays of light from the star under observation fall on a mirror which is both carefully shaped and highly polished. After reflection, the rays proceed to a focus, and diverging from thence, fall on the eye-piece, by which they are restored to parallelism, and thus become adapted for reception in the eye. It was essentially on this principle (though with a secondary flat mirror at the upper end of the tube reflecting the rays at a right angle to the side of the tube, where the eye-piece is placed) that Sir Isaac Newton constructed the little reflecting telescope which is now treasured by the Royal Society. A famous instrument of the Newtonian type was built, half a century ago, by the late Earl of Rosse, at Parsonstown. It is represented in Fig. 7. The colossal aperture of this instrument has never been surpassed; it has, indeed, never been rivalled. The mirror or speculum, as it is often called, is a thick metallic disc, composed of a mixture of two parts of copper with one of tin. This alloy is so hard and brittle as to make the necessary mechanical operations difficult to manage. The material admits, however, of a brilliant polish, and of receiving and retaining an accurate figure. The Rosse speculum—six feet in diameter and three tons in weight—reposes at the lower end of a telescope fifty-five feet long. The tube is suspended between two massive castellated walls, which form an imposing feature on the lawn at Birr Castle. This instrument cannot be turned about towards every part of the sky, like the equatorials we have recently been considering. The great tube is only capable of elevation in altitude along the meridian, and of a small lateral movement east and west of the meridian. Every star or nebula visible in the latitude of Parsonstown (except those very near the pole) can, however, be observed in the great telescope, if looked for at the right time.

Before the object reaches the meridian, the telescope must be adjusted at the right elevation. The necessary power is transmitted by a chain from a winch at the northern end of the walls to a point near the upper end of the tube. By this contrivance the telescope can be raised or lowered, and an ingenious system of counterpoises renders the movement equally easy at all altitudes. The observer then takes his station in one of the galleries which give access to the eye-piece; and when the right moment has arrived, the star enters the field of view. Powerful mechanism drives the great instrument, so as to counteract the diurnal movement, and thus the observer can retain the object in view until he has made his measurements or finished his drawing.

Of late years reflecting telescopes have been generally made with mirrors of glass covered with a thin film of silver, which is capable of reflecting much more light than the surface of a metallic mirror. Among great reflectors of this kind we may mention two, of three and five feet aperture respectively, with which Dr. Common has done valuable work.

We must not, however, assume that for the general work in an observatory a colossal instrument is the most suitable. The mighty reflector, or refractor, is chiefly of use where unusually faint objects are being examined. For work in which accurate measurements are made of objects not particularly difficult to see, telescopes of smaller dimensions are more suitable. The fundamental facts about the heavenly bodies have been chiefly learned from observations obtained with instruments of moderate optical power, specially furnished so as to enable precise measures of position to be secured. Indeed, in the early stages of astronomy, important determinations of position were effected by contrivances which showed the direction of the object without any telescopic aid.

Perhaps the most valuable measurements obtained in our modern observatories are yielded by that instrument of precision known as the meridian circle. It is impossible, in any adequate account of the Story of the Heavens, to avoid some reference to this indispensable aid to astronomical research, and therefore we shall give a brief account of one of its simpler forms, choosing for this purpose a great instrument in the Paris Observatory, which is represented in Fig. 8.

The telescope is attached at its centre to an axis at right angles to its length. Pivots at each extremity of this axis rotate upon fixed bearings, so that the movements of the telescope are completely restricted to the plane of the meridian. Inside the eye-piece of the telescope extremely fine vertical fibres are stretched. The observer watches the moon, or star, or planet enter the field of view; and he notes by the clock the exact time, to the fraction of a second, at which the object passes over each of the lines. A silver band on the circle attached to the axis is divided into degrees and subdivisions of a degree, and as this circle moves with the telescope, the elevation at which the instrument is pointed will be indicated. For reading the delicately engraved marks and figures on the silver, microscopes are necessary. These are shown in the sketch, each one being fixed into an aperture in the wall which supports one end of the instrument. At the opposite side is a lamp, the light from which passes through the perforated axis of the pivot, and is thence ingeniously deflected by mirrors so as to provide the requisite illumination for the lines at the focus.

The fibres which the observer sees stretched over the field of view of the telescope demand a few words of explanation. We require for this purpose a material which shall be very fine and fairly durable, as well as somewhat elastic, and of no appreciable weight. These conditions cannot be completely fulfilled by any metallic wire, but they are exquisitely realised in the beautiful thread which is spun by the spider. The delicate fibres are stretched with nice skill across the field of view of the telescope, and cemented in their proper places. With instruments so beautifully appointed we can understand the precision attained in modern observations. The telescope is directed towards a star, and the image of the star is a minute point of light. When that point coincides with the intersection of the two central spider lines the telescope is properly sighted. We use the word sighted designedly, because we wish to suggest a comparison between the sighting of a rifle at the target and the sighting of a telescope at a star. Instead of the ordinary large bull's-eye, suppose that the target only consisted of a watch-dial, which, of course, the rifleman could not see at the distance of any ordinary range. But with the telescope of the meridian circle the watch-dial would be visible even at the distance of a mile. The meridian circle is indeed capable of such precision as a sighting instrument that it could be pointed separately to each of two stars which subtend at the eye an angle no greater than that subtended by an adjoining pair of the sixty minute dots around the circumference of a watch-dial a mile distant from the observer.

This power of directing the instrument so accurately would be of but little avail unless it were combined with arrangements by which, when once the telescope has been pointed correctly, the position of the star can be ascertained and recorded. One element in the determination of the position is secured by the astronomical clock, which gives the moment when the object crosses the central vertical wire; the other element is given by the graduated circle which reads the angular distance of the star from the zenith or point directly overhead.

Superb meridian instruments adorn our great observatories, and are nightly devoted to those measurements upon which the great truths of astronomy are mainly based. These instruments have been constructed with refined skill; but it is the duty of the painstaking astronomer to distrust the accuracy of his instrument in every conceivable way. The great tube may be as rigid a structure as mechanical engineers can produce; the graduations on the circle may have been engraved by the most perfect of dividing machines; but the conscientious astronomer will not be content with mere mechanical precision. That meridian circle which, to the uninitiated, seems a marvellous piece of workmanship, possessing almost illimitable accuracy, is viewed in a very different light by the astronomer who makes use of it. No one can appreciate more fully than he the skill of the artist who has made that meridian circle, and the beautiful contrivances for illumination and reading off which give to the instrument its perfection; but while the astronomer recognises the beauty of the actual machine he is using, he has always before his mind's eye an ideal instrument of absolute perfection, to which the actual meridian circle only makes an approximation.

Contrasted with the ideal instrument, the finest meridian circle is little more than a mass of imperfections. The ideal tube is perfectly rigid, the actual tube is flexible; the ideal divisions of the circle are perfectly uniform, the actual divisions are not uniform. The ideal instrument is a geometrical embodiment of perfect circles, perfect straight lines, and perfect right angles; the actual instrument can only show approximate circles, approximate straight lines, and approximate right angles. Perhaps the spider's part of the work is on the whole the best; the stretched web gives us the nearest mechanical approach to a perfectly straight line; but we mar the spider's work by not being able to insert those beautiful threads with perfect uniformity, while our attempts to adjust two of them across the field of view at right angles do not succeed in producing an angle of exactly ninety degrees.

Nor are the difficulties encountered by the meridian observer due solely to his instrument. He has to contend against his own imperfections; he has often to allow for personal peculiarities of an unexpected nature; the troubles that the atmosphere can give are notorious; while the levelling of his instrument warns him that he cannot even rely on the solid earth itself. We learn that the earthquakes, by which the solid ground is sometimes disturbed, are merely the more conspicuous instances of incessant small movements in the earth which every night in the year derange the delicate adjustment of the instrument.

When the existence of these errors has been recognised, the first great step has been taken. By an alliance between the astronomer and the mathematician it is possible to measure the discrepancies between the actual meridian circle and the instrument that is ideally perfect. Once this has been done, we can estimate the effect which the irregularities produce on the observations, and finally, we succeed in purging the observations from the grosser errors by which they are contaminated. We thus obtain results which are not indeed mathematically accurate, but are nevertheless close approximations to those which would be obtained by a perfect observer using an ideal instrument of geometrical accuracy, standing on an earth of absolute rigidity, and viewing the heavens without the intervention of the atmosphere.

In addition to instruments like those already indicated, astronomers have other means of following the motions of the heavenly bodies. Within the last fifteen years photography has commenced to play an important part in practical astronomy. This beautiful art can be utilised for representing many objects in the heavens by more faithful pictures than the pencil of even the most skilful draughtsman can produce. Photography is also applicable for making charts of any region in the sky which it is desired to examine. When repeated pictures of the same region are made from time to time, their comparison gives the means of ascertaining whether any star has moved during the interval. The amount and direction of this motion may be ascertained by a delicate measuring apparatus under which the photographic plate is placed.

If a refracting telescope is to be used for taking celestial photographs, the lenses of the object-glass must be specially designed for this purpose. The rays of light which imprint an image on the prepared plate are not exactly the same as those which are chiefly concerned in the production of the image on the retina of the human eye. A reflecting mirror, however, brings all the rays, both those which are chemically active and those which are solely visual, to one and the same focus. The same reflecting instrument may therefore be used either for looking at the heavens or for taking pictures on a photographic plate which has been substituted for the observer's eye.

A simple portrait camera has been advantageously employed for obtaining striking photographs of larger areas of the sky than can be grasped in a long telescope; but for purposes of accurate measurement those taken with the latter are incomparably better.

It is needless to say that the photographic apparatus, whatever it may be, must be driven by delicately-adjusted clockwork to counteract the apparent daily motion of the stars caused by the rotation of the earth. The picture would otherwise be spoiled, just as a portrait is ruined if the sitter does not remain quiet during the exposure.

Among the observatories in the United Kingdom the Royal Observatory at Greenwich is of course the most famous. It is specially remarkable among all the similar institutions in the world for the continuity of its labours for several generations. Greenwich Observatory was founded in 1675 for the promotion of astronomy and navigation, and the observations have from the first been specially arranged with the object of determining with the greatest accuracy the positions of the principal fixed stars, the sun, the moon, and the planets. In recent years, however, great developments of the work of the Observatory have been witnessed, and the most modern branches of the science are now assiduously pursued there.

The largest equatorial at Greenwich is a refractor of twenty-eight inches aperture and twenty-eight feet long, constructed by Sir Howard Grubb. A remarkable composite instrument from the same celebrated workshop has also been recently added to our national institution. It consists of a great refractor specially constructed for photography, of twenty-six inches aperture (presented by Sir Henry Thompson) and a reflector of thirty inches diameter, which is the product of Dr. Common's skill. The huge volume published annually bears witness to the assiduity with which the Astronomer Royal and his numerous staff of assistant astronomers make use of the splendid means at their disposal.

The southern part of the heavens, most of which cannot be seen in this country, is watched from various observatories in the southern hemisphere. Foremost among them is the Royal Observatory at the Cape of Good Hope, which is furnished with first-class instruments. We may mention a great photographic telescope, the gift of Mr. M'Clean. Astronomy has been greatly enriched by the many researches made by Dr. Gill, the director of the Cape Observatory.

It is not, however, necessary to use such great instruments to obtain some idea of the aid the telescope will afford. The most suitable instrument for commencing astronomical studies is within ordinary reach. It is the well-known binocular that a captain uses on board ship; or if that cannot be had, then the common opera-glass will answer nearly as well. This is, no doubt, not so powerful as a telescope, but it has some compensating advantages. The opera-glass will enable us to survey a large region of the sky at one glance, while a telescope, generally speaking, presents a much smaller field of view.

Let us suppose that the observer is provided with an opera-glass and is about to commence his astronomical studies. The first step is to become acquainted with the conspicuous group of seven stars represented in Fig. 9. This group is often called the Plough, or Charles's Wain, but astronomers prefer to regard it as a portion of the constellation of the Great Bear (Ursa Major). There are many features of interest in this constellation, and the beginner should learn as soon as possible to identify the seven stars which compose it. Of these the two marked a and b, at the head of the Bear, are generally called the "pointers." They are of special use, because they serve to guide the eye to that most important star in the whole sky, known as the "pole star."

Fix the attention on that region in the Great Bear, which forms a sort of rectangle, of which the stars a b g d are the corners. The next fine night try to count how many stars are visible within that rectangle. On a very fine night, without a moon, perhaps a dozen might be perceived, or even more, according to the keenness of the eyesight. But when the opera-glass is directed to the same part of the constellation an astonishing sight is witnessed. A hundred stars can now be seen with the greatest ease.

But the opera-glass will not show nearly all the stars in this region. Any good telescope will reveal many hundreds too faint for the feebler instrument. The greater the telescope the more numerous the stars: so that seen through one of the colossal instruments the number would have to be reckoned in thousands.

We have chosen the Great Bear because it is more generally known than any other constellation. But the Great Bear is not exceptionally rich in stars. To tell the number of the stars is a task which no man has accomplished; but various estimates have been made. Our great telescopes can probably show at least 50,000,000 stars.

The student who uses a good refracting telescope, having an object-glass not less than three inches in diameter, will find occupation for many a fine evening. It will greatly increase the interest of his work if he have the charming handbook of the heavens known as Webb's "Celestial Objects for Common Telescopes."



The vast Size of the Sun—Hotter than Melting Platinum—Is the Sun the Source of Heat for the Earth?—The Sun is 92,900,000 miles distant—How to realise the magnitude of this distance—Day and Night—Luminous and Non-Luminous Bodies—Contrast between the Sun and the Stars—The Sun a Star—Granulated Appearance of the Sun—The Spots on the Sun—Changes in the Form of a Spot—The Faculae—The Rotation of the Sun on its Axis—View of a Typical Sun-Spot—Periodicity of the Sun-Spots—Connection between the Sun-Spots and Terrestrial Magnetism—Principles of Spectrum Analysis—Substances present in the Sun—Spectrum of a Spot—The Prominences surrounding the Sun—Total Eclipse of the Sun—Size and Movement of the Prominences—Their connection with the Spots—Spectroscopic Measurement of Motion on the Sun—The Corona surrounding the Sun—Constitution of the Sun.

In commencing our examination of the orbs which surround us, we naturally begin with our peerless sun. His splendid brilliance gives him the pre-eminence over all other celestial bodies.

The dimensions of our luminary are commensurate with his importance. Astronomers have succeeded in the difficult task of ascertaining the exact figures, but they are so gigantic that the results are hard to realise. The diameter of the orb of day, or the length of the axis, passing through the centre from one side to the other, is 866,000 miles. Yet this bare statement of the dimensions of the great globe fails to convey an adequate idea of its vastness. If a railway were laid round the sun, and if we were to start in an express train moving sixty miles an hour, we should have to travel for five years without intermission night or day before we had accomplished the journey.

When the sun is compared with the earth the bulk of our luminary becomes still more striking. Suppose his globe were cut up into one million parts, each of these parts would appreciably exceed the bulk of our earth. Fig. 10 exhibits a large circle and a very small one, marked S and E respectively. These circles show the comparative sizes of the two bodies. The mass of the sun does not, however, exceed that of the earth in the same proportion. Were the sun placed in one pan of a mighty weighing balance, and were 300,000 bodies as heavy as our earth placed in the other, the luminary would turn the scale.

The sun has a temperature far surpassing any that we artificially produce, either in our chemical laboratories or our metallurgical establishments. We can send a galvanic current through a piece of platinum wire. The wire first becomes red hot, then white hot; then it glows with a brilliance almost dazzling until it fuses and breaks. The temperature of the melting platinum wire could hardly be surpassed in the most elaborate furnaces, but it does not attain the temperature of the sun.

It must, however, be admitted that there is an apparent discrepancy between a fact of common experience and the statement that the sun possesses the extremely high temperature that we have just tried to illustrate. "If the sun were hot," it has been said, "then the nearer we approach to him the hotter we should feel; yet this does not seem to be the case. On the top of a high mountain we are nearer to the sun, and yet everybody knows that it is much colder up there than in the valley beneath. If the mountain be as high as Mont Blanc, then we are certainly two or three miles nearer the glowing globe than we were at the sea-level; yet, instead of additional warmth, we find eternal snow." A simple illustration may help to lessen this difficulty. In a greenhouse on a sunshiny day the temperature is much hotter than it is outside. The glass will permit the hot sunbeams to enter, but it refuses to allow them out again with equal freedom, and consequently the temperature rises. The earth may, from this point of view, be likened to a greenhouse, only, instead of the panes of glass, our globe is enveloped by an enormous coating of air. On the earth's surface, we stand, as it were, inside the greenhouse, and we benefit by the interposition of the atmosphere; but when we climb very high mountains, we gradually pass through some of the protecting medium, and then we suffer from the cold. If the earth were deprived of its coat of air, it seems certain that eternal frost would reign over whole continents as well as on the tops of the mountains.

The actual distance of the sun from the earth is about 92,900,000 miles; but by merely reciting the figures we do not receive a vivid impression of the real magnitude. It would be necessary to count as quickly as possible for three days and three nights before one million was completed; yet this would have to be repeated nearly ninety-three times before we had counted all the miles between the earth and the sun.

Every clear night we see a vast host of stars scattered over the sky. Some are bright, some are faint, some are grouped into remarkable forms. With regard to this multitude of brilliant points we have now to ask an important question. Are they bodies which shine by their own light like the sun, or do they only shine with borrowed light like the moon? The answer is easily stated. Most of those bodies shine by their own light, and they are properly called stars.

Suppose that the sun and the multitude of stars, properly so called, are each and all self-luminous brilliant bodies, what is the great distinction between the sun and the stars? There is, of course, a vast and obvious difference between the unrivalled splendour of the sun and the feeble twinkle of the stars. Yet this distinction does not necessarily indicate that our luminary has an intrinsic splendour superior to that of the stars. The fact is that we are nestled up comparatively close to the sun for the benefit of his warmth and light, while we are separated from even the nearest of the stars by a mighty abyss. If the sun were gradually to retreat from the earth, his light would decrease, so that when he had penetrated the depths of space to a distance comparable with that by which we are separated from the stars, his glory would have utterly departed. No longer would the sun seem to be the majestic orb with which we are familiar. No longer would he be a source of genial heat, or a luminary to dispel the darkness of night. Our great sun would have shrunk to the insignificance of a star, not so bright as many of those which we see every night.

Momentous indeed is the conclusion to which we are now led. That myriad host of stars which studs our sky every night has been elevated into vast importance. Each one of those stars is itself a mighty sun, actually rivalling, and in many cases surpassing, the splendour of our own luminary. We thus open up a majestic conception of the vast dimensions of space, and of the dignity and splendour of the myriad globes by which that space is tenanted.

There is another aspect of the picture not without its utility. We must from henceforth remember that our sun is only a star, and not a particularly important star. If the sun and the earth, and all which it contains, were to vanish, the effect in the universe would merely be that a tiny star had ceased its twinkling. Viewed simply as a star, the sun must retire to a position of insignificance in the mighty fabric of the universe. But it is not as a star that we have to deal with the sun. To us his comparative proximity gives him an importance incalculably transcending that of all the other stars. We imagined ourselves to be withdrawn from the sun to obtain his true perspective in the universe; let us now draw near, and give him that attention which his supreme importance to us merits.

To the unaided eye the sun appears to be a flat circle. If, however, it be examined with the telescope, taking care of course to interpose a piece of dark-coloured glass, or to employ some similar precaution to screen the eye from injury, it will then be perceived that the sun is not a flat surface, but a veritable glowing globe.

The first question which we must attempt to answer enquires whether the glowing matter which forms the globe is a solid mass, or, if not solid, which is it, liquid or gaseous? At the first glance we might think that the sun cannot be fluid, and we might naturally imagine that it was a solid ball of some white-hot substance. But this view is not correct; for we can show that the sun is certainly not a solid body in so far at least as its superficial parts are concerned.

A general view of the sun as shown by a telescope of moderate dimensions may be seen in Fig. 11, which is taken from a photograph obtained by Mr. Rutherford at New York on the 22nd of September, 1870. It is at once seen that the surface of the luminary is by no means of uniform texture or brightness. It may rather be described as granulated or mottled. This appearance is due to the luminous clouds which float suspended in a somewhat less luminous layer of gas. It is needless to say that these solar clouds are very different from the clouds which we know so well in our own atmosphere. Terrestrial clouds are, of course, formed from minute drops of water, while the clouds at the surface of the sun are composed of drops of one or more chemical elements at an exceedingly high temperature.

The granulated appearance of the solar surface is beautifully shown in the remarkable photographs on a large scale which M. Janssen, of Meudon, has succeeded in obtaining during the last twenty years. We are enabled to reproduce one of them in Fig. 12. It will be observed that the interstices between the luminous dots are of a greyish tint, the general effect (as remarked by Professor Young) being much like that of rough drawing paper seen from a little distance. We often notice places over the surface of such a plate where the definition seems to be unsatisfactory. These are not, however, the blemishes that might at first be supposed. They arise neither from casual imperfections of the photographic plate nor from accidents during the development; they plainly owe their origin to some veritable cause in the sun itself, nor shall we find it hard to explain what that cause must be. As we shall have occasion to mention further on, the velocities with which the glowing gases on the sun are animated must be exceedingly great. Even in the hundredth part of a second (which is about the duration of the exposure of this plate) the movements of the solar clouds are sufficiently great to produce the observed indistinctness.

Irregularly dispersed over the solar surface small dark objects called sun-spots are generally visible. These spots vary greatly both as to size and as to number. Sun-spots were first noticed in the beginning of the seventeenth century, shortly after the invention of the telescope. Their general appearance is shown in Fig. 13, in which the dark central nucleus appears in sharp contrast with the lighter margin or penumbra. Fig. 16 shows a small spot developing out of one of the pores or interstices between the granules.

The earliest observers of these spots had remarked that they seem to have a common motion across the sun. In Fig. 14 we give a copy of a remarkable drawing by Father Scheiner, showing the motion of two spots observed by him in March, 1627. The figure indicates the successive positions assumed by the spots on the several days from the 2nd to the 16th March. Those marks which are merely given in outline represent the assumed positions on the 11th and the 13th, on which days it happened that the weather was cloudy, so that no observations could be made. It is invariably found that these objects move in the same direction—namely, from the eastern to the western limb[3] of the sun. They complete the journey across the face of the sun in twelve or thirteen days, after which they remain invisible for about the same length of time until they reappear at the eastern limb. These early observers were quick to discern the true import of their discovery. They deduced from these simple observations the remarkable fact that the sun, like the earth, performs a rotation on its axis, and in the same direction. But there is the important difference between these rotations that whereas the earth takes only twenty-four hours to turn once round, the solar globe takes about twenty-six days to complete one of its much more deliberate rotations.

If we examine sun-spots under favourable atmospheric conditions and with a telescope of fairly large aperture, we perceive a great amount of interesting detail which is full of information with regard to the structure of the sun. The penumbra of a spot is often found to be made up of filaments directed towards the middle of the spot, and generally brighter at their inner ends, where they adjoin the nucleus. In a regularly formed spot the outline of the penumbra is of the same general form as that of the nucleus, but astronomers are frequently deeply interested by witnessing vast spots of very irregular figure. In such cases the bright surface-covering of the sun (the photosphere, as it is called) often encroaches on the nucleus and forms a peninsula stretching out into, or even bridging across, the gloomy interior. This is well shown in Professor Langley's fine drawing (Plate II.) of a very irregular spot which he observed on December 23-24, 1873.

The details of a spot vary continually; changes may often be noticed even from day to day, sometimes from hour to hour. A similar remark may be made with respect to the bright streaks or patches which are frequently to be observed especially in the neighbourhood of spots. These bright marks are known by the name of faculae (little torches). They are most distinctly seen near the margin of the sun, where the light from its surface is not so bright as it is nearer to the centre of the disc. The reduction of light at the margin is due to the greater thickness of absorbing atmosphere round the sun, through which the light emitted from the regions near the margin has to pass in starting on its way towards us.

None of the markings on the solar disc constitute permanent features on the sun. Some of these objects may no doubt last for weeks. It has, indeed, occasionally happened that the same spot has marked the solar globe for many months; but after an existence of greater or less duration those on one part of the sun may disappear, while as frequently fresh marks of the same kind become visible in other places. The inference from these various facts is irresistible. They tell us that the visible surface of the sun is not a solid mass, is not even a liquid mass, but that the globe, so far as we can see it, consists of matter in the gaseous, or vaporous, condition.

It often happens that a large spot divides into two or more separate portions, and these have been sometimes seen to fly apart with a velocity in some cases not less than a thousand miles an hour. "At times, though very rarely" (I quote here Professor Young,[4] to whom I am frequently indebted), "a different phenomenon of the most surprising and startling character appears in connection with these objects: patches of intense brightness suddenly break out, remaining visible for a few minutes, moving, while they last, with velocities as great as one hundred miles a second."

"One of these events has become classical. It occurred on the forenoon (Greenwich time) of September 1st, 1859, and was independently witnessed by two well-known and reliable observers—Mr. Carrington and Mr. Hodgson—whose accounts of the matter may be found in the Monthly Notices of the Royal Astronomical Society for November, 1859. Mr. Carrington at the time was making his usual daily observations upon the position, configuration, and size of the spots by means of an image of the solar disc upon a screen—being then engaged upon that eight years' series of observations which lie at the foundation of so much of our present solar science. Mr. Hodgson, at a distance of many miles, was at the same time sketching details of sun-spot structure by means of a solar eye-piece and shade-glass. They simultaneously saw two luminous objects, shaped something like two new moons, each about eight thousand miles in length and two thousand wide, at a distance of some twelve thousand miles from each other. These burst suddenly into sight at the edge of a great sun-spot with a dazzling brightness at least five or six times that of the neighbouring portions of the photosphere, and moved eastward over the spot in parallel lines, growing smaller and fainter, until in about five minutes they disappeared, after traversing a course of nearly thirty-six thousand miles."

The sun-spots do not occur at all parts of the sun's surface indifferently. They are mainly found in two zones (Fig. 15) on each side of the solar equator between the latitudes of 10 deg. and 30 deg.. On the equator the spots are rare except, curiously enough, near the time when there are few spots elsewhere. In high latitudes they are never seen. Closely connected with these peculiar principles of their distribution is the remarkable fact that spots in different latitudes do not indicate the same values for the period of rotation of the sun. By watching a spot near the sun's equator Carrington found that it completed a revolution in twenty-five days and two hours. At a latitude of 20 deg. the period is about twenty-five days and eighteen hours, at 30 deg. it is no less than twenty-six days and twelve hours, while the comparatively few spots observed in the latitude of 45 deg. require twenty-seven and a half days to complete their circuit.

As the sun, so far at least as its outer regions are concerned, is a mass of gas and not a solid body, there would be nothing incredible in the supposition that spots are occasionally endowed with movements of their own like ships on the ocean. It seems, however, from the facts before us that the different zones on the sun, corresponding to what we call the torrid and temperate zones on the earth, persist in rotating with velocities which gradually decrease from the equator towards the poles. It seems probable that the interior parts of the sun do not rotate as if the whole were a rigidly connected mass. The mass of the sun, or at all events its greater part, is quite unlike a rigid body, and the several portions are thus to some extent free for independent motion. Though we cannot actually see how the interior parts of the sun rotate, yet here the laws of dynamics enable us to infer that the interior layers of the sun rotate more rapidly than the outer layers, and thus some of the features of the spot movements can be accounted for. But at present it must be confessed that there are great difficulties in the way of accounting for the distribution of spots and the law of rotation of the sun.

In the year 1826 Schwabe, a German astronomer, commenced to keep a regular register of the number of spots visible on the sun. After watching them for seventeen years he was able to announce that the number of spots seemed to fluctuate from year to year, and that there was a period of about ten years in their changes. Subsequent observations have confirmed this discovery, and old books and manuscripts have been thoroughly searched for information of early date. Thus a more or less complete record of the state of the sun as regards spots since the beginning of the seventeenth century has been put together. This has enabled astronomers to fix the period of the recurring maximum with greater accuracy.

The course of one of the sun-spot cycles may be described as follows: For two or three years the spots are both larger and more numerous than on the average; then they begin to diminish, until in about six or seven years from the maximum they decline to a minimum; the number of the spots then begins to increase, and in about four and a half years the maximum is once more attained. The length of the cycle is, on an average, about eleven years and five weeks, but both its length and the intensity of the maxima vary somewhat. For instance, a great maximum occurred in the summer of 1870, after which a very low minimum occurred in 1879, followed by a feeble maximum at the end of 1883; next came an average minimum about August, 1889, followed by the last observed maximum in January, 1894. It is not unlikely that a second period of about sixty or eighty years affects the regularity of the eleven-year period. Systematic observations carried on through a great many years to come will be required to settle this question, as the observations of sun-spots previous to 1826 are far too incomplete to decide the issues which arise.

A curious connection seems to exist between the periodicity of the spots and their distribution over the surface of the sun. When a minimum is about to pass away the spots generally begin to show themselves in latitudes about 30 deg. north and south of the sun's equator; they then gradually break out somewhat nearer to the equator, so that at the time of maximum frequency most of them appear at latitudes not greater than 16 deg.. This distance from the sun's equator goes on decreasing till the time of minimum. Indeed, the spots linger on very close to the equator for a couple of years more, until the outbreak signalising the commencement of another period has commenced in higher latitudes.

We have still to note an extraordinary feature which points to an intimate connection between the phenomena of sun-spots and the purely terrestrial phenomena of magnetism. It is of course well known that the needle of a compass does not point exactly to the north, but diverges from the meridian by an angle which is different in different places and is not even constant at the same place. For instance, at Greenwich the needle at present points in a direction 17 deg. West of North, but this amount is subject to very slow and gradual changes, as well as to very small daily oscillations. It was found about fifty years ago by Lamont (a Bavarian astronomer, but a native of Scotland) that the extent of this daily oscillation increases and decreases regularly in a period which he gave as 10-1/3 years, but which was subsequently found to be 11-1/10 years, exactly the same as the period of the spots on the sun. From a diligent study of the records of magnetic observations it has been found that the time of sun-spot maximum always coincides almost exactly with that of maximum daily oscillation of the compass needle, while the minima agree similarly. This close relationship between the periodicity of sun-spots and the daily movements of the magnetic needle is not the sole proof we possess that there is a connection of some sort between solar phenomena and terrestrial magnetism. A time of maximum sun-spots is a time of great magnetic activity, and there have even been special cases in which a peculiar outbreak on the sun has been associated with remarkable magnetic phenomena on the earth. A very interesting instance of this kind is recorded by Professor Young, who, when observing at Sherman on the 3rd August, 1872, perceived a very violent disturbance of the sun's surface. He was told the same day by a member of his party, who was engaged in magnetic observations and who was quite in ignorance of what Professor Young had seen, that he had been obliged to desist from his magnetic work in consequence of the violent motion of his magnet. It was afterwards found from the photographic records at Greenwich and Stonyhurst that the magnetic "storm" observed in America had simultaneously been felt in England. A similar connection between sun-spots and the aurora borealis has also been noticed, this fact being a natural consequence of the well-known connection between the aurora and magnetic disturbances. On the other hand, it must be confessed that many striking magnetic storms have occurred without any corresponding solar disturbance,[5] but even those who are inclined to be sceptical as to the connection between these two classes of phenomena in particular cases can hardly doubt the remarkable parallelism between the general rise and fall in the number of sun-spots and the extent of the daily movements of the compass needle.

We have now described the principal solar phenomena with which the telescope has made us acquainted. But there are many questions connected with the nature of the sun which not even the most powerful telescope would enable us to solve, but which the spectroscope has given us the means of investigating.

What we receive from the sun is warmth and light. The intensely heated mass of the sun radiates forth its beams in all directions with boundless prodigality. Each beam we feel to be warm, and we see to be brilliantly white, but a more subtle analysis than mere feeling or mere vision is required. Each sunbeam bears marks of its origin. These marks are not visible until a special process has been applied, but then the sunbeam can be made to tell its story, and it will disclose to us much of the nature of the constitution of the great luminary.

We regard the sun's light as colourless, just as we speak of water as tasteless, but both of those expressions relate rather to our own feelings than to anything really characteristic of water or of sunlight. We regard the sunlight as colourless because it forms, as it were, the background on which all other colours are depicted. The fact is, that white is so far from being colourless that it contains every known hue blended together in certain proportions. The sun's light is really extremely composite; Nature herself tells us this if we will but give her the slightest attention. Whence come the beautiful hues with which we are all familiar? Look at the lovely tints of a garden; the red of the rose is not in the rose itself. All the rose does is to grasp the sunbeams which fall upon it, extract from these beams the red which they contain, and radiate that red light to our eyes. Were there not red rays conveyed with the other rays in the sunbeam, there could be no red rose to be seen by sunlight.

The principle here involved has many other applications; a lady will often say that a dress which looks very well in the daylight does not answer in the evening. The reason is that the dress is intended to show certain colours which exist in the sunlight; but these colours are not contained to the same degree in gaslight, and consequently the dress has a different hue. The fault is not in the dress, the fault lies in the gas; and when the electric light is used it sends forth beams more nearly resembling those from the sun, and the colours of the dress appear with all their intended beauty.

The most glorious natural indication of the nature of the sunlight is seen in the rainbow. Here the sunbeams are refracted and reflected from tiny globes of water in the clouds; these convey to us the sunlight, and in doing so decompose the white beams into the seven primary hues—red, orange, yellow, green, blue, indigo, and violet.

The bow set in the cloud is typical of that great department of modern science of which we shall now set forth the principles. The globes of water decompose the solar beams; and we follow the course suggested by the rainbow, and analyse the sunlight into its constituents. We are enabled to do this with scientific accuracy when we employ that remarkable key to Nature's secrets known as the spectroscope. The beams of white sunlight consist of innumerable beams of every hue in intimate association. Every shade of red, of yellow, of blue, and of green, can be found in a sunbeam. The magician's wand, with which we strike the sunbeam and sort the tangled skein into perfect order, is the simple instrument known as the glass prism. We have represented this instrument in its simplest form in the adjoining figure (Fig. 17). It is a piece of pure and homogeneous glass in the shape of a wedge. When a ray of light from the sun or from any source falls upon the prism, it passes through the transparent glass and emerges on the other side; a remarkable change is, however, impressed on the ray by the influence of the glass. It is bent by refraction from the path it originally pursued, and is compelled to follow a different path. If, however, the prism bent all rays of light equally, then it would be of no service in the analysis of light; but it fortunately happens that the prism acts with varying efficiency on the rays of different hues. A red ray is not refracted so much as a yellow ray; a yellow ray is not refracted so much as a blue one. It consequently happens that when the composite beam of sunlight, in which all the different rays are blended, passes through the prism, they emerge in the manner shown in the annexed figure (Fig. 18). Here then we have the source of the analysing power of the prism; it bends the different hues unequally and consequently the beam of composite sunlight, after passing through the prism, no longer shows mere white light, but is expanded into a coloured band of light, with hues like the rainbow, passing from deep red at one end through every intermediate grade to the violet.

We have in the prism the means of decomposing the light from the sun, or the light from any other source, into its component parts. The examination of the quality of the light when analysed enables us to learn something of the constitution of the body from which this light has emanated. Indeed, in some simple cases the mere colour of a light will be sufficient to indicate the source from which it has come. There is, for instance, a splendid red light sometimes seen in displays of fireworks, due to the metal strontium. The eye can identify the element by the mere colour of the flame. There is also a characteristic yellow light produced by the flame of common salt burned with spirits of wine. Sodium is the important constituent of salt, so here we recognise another substance merely by the colour it emits when burning. We may also mention a third substance, magnesium, which burns with a brilliant white light, eminently characteristic of the metal.

The three metals, strontium, sodium, and magnesium, may thus be identified by the colours they produce when incandescent. In this simple observation lies the germ of the modern method of research known as spectrum analysis. We may now examine with the prism the colours of the sun and the colours of the stars, and from this examination we can learn something of the materials which enter into their composition. We are not restricted to the use of merely a single prism, but we may arrange that the light which it is desired to analyse shall pass through several prisms in succession in order to increase the dispersion or the spreading out of the different colours. To enter the spectroscope the light first passes through a narrow slit, and the rays are then rendered parallel by passing through a lens; these parallel rays next pass through one or more prisms, and are finally viewed through a small telescope, or they may be intercepted by a photographic plate on which a picture will then be made. If the beam of light passing through the slit has radiated from an incandescent solid or liquid body, or from a gas under high pressure, the coloured band or spectrum is found to contain all the colours indicated on Plate XIII., without any interruption between the colours. This is known as a continuous spectrum. But if we examine light from a gas under low pressure, as can be done by placing a small quantity of the gas in a glass tube and making it glow by an electric current, we find that it does not emit rays of all colours, but only rays of certain distinct colours which are different for different gases. The spectrum of a gas, therefore, consists of a number of detached luminous lines.

When we study the sunlight through the prism, it is found that the spectrum does not extend quite continuously from one end to the other, but is shaded over by a multitude of dark lines, only a few of which are shown in the adjoining plate. (Plate XIII.) These lines are a permanent feature in the solar spectrum. They are as characteristic of the sunlight as the prismatic colours themselves, and are full of interest and information with regard to the sun. These lines are the characters in which the history and the nature of the sun are written. Viewed through an instrument of adequate power, dark lines are to be found crossing the solar spectrum in hundreds and in thousands. They are of every variety of strength and faintness; their distribution seems guided by no simple law. At some parts of the spectrum there are but few lines; in other regions they are crowded so closely together that it is difficult to separate them. They are in some places exquisitely fine and delicate, and they never fail to excite the admiration of every one who looks at this interesting spectacle in a good instrument.

There can be no better method of expounding the rather difficult subject of spectrum analysis than by actually following the steps of the original discovery which first gave a clear demonstration of the significance of the dark "Fraunhofer" lines. Let us concentrate our attention specially upon that line of the solar spectrum marked D. This, when seen in the spectroscope, is found to consist of two lines, very delicately separated by a minute interval, one of these lines being slightly thicker than the other. Suppose that while the attention is concentrated on these lines the flame of an ordinary spirit-lamp coloured by common salt be held in front of the instrument, so that the ray of direct solar light passes through the flame before entering the spectroscope. The observer sees at once the two lines known as D flash out with a greatly increased blackness and vividness, while there is no other perceptible effect on the spectrum. A few trials show that this intensification of the D lines is due to the vapour of sodium arising from the salt burning in the lamp through which the sunlight has passed.

It is quite impossible that this marvellous connection between sodium and the D lines of the spectrum can be merely casual. Even if there were only a single line concerned, it would be in the highest degree unlikely that the coincidence should arise by accident; but when we find the sodium affecting both of the two close lines which form D, our conviction that there must be some profound connection between these lines and sodium rises to absolute certainty. Suppose that the sunlight be cut off, and that all other light is excluded save that emanating from the glowing vapour of sodium in the spirit flame. We shall then find, on looking through the spectroscope, that we no longer obtain all the colours of the rainbow; the light from the sodium is concentrated into two bright yellow lines, filling precisely the position which the dark D lines occupied in the solar spectrum, and the darkness of which the sodium flame seemed to intensify.

1  2  3  4  5  6  7  8  9  10  11  12  13     Next Part
Home - Random Browse